Files
lightrag/lightrag/kg/faiss_impl.py
2025-02-18 19:58:03 +01:00

321 lines
11 KiB
Python

import os
import time
import asyncio
from typing import Any, final
import json
import numpy as np
from dataclasses import dataclass
import pipmaster as pm
from lightrag.utils import (
logger,
compute_mdhash_id,
)
from lightrag.base import (
BaseVectorStorage,
)
if not pm.is_installed("faiss"):
pm.install("faiss")
try:
import faiss
except ImportError as e:
raise ImportError(
"`faiss` library is not installed. Please install it via pip: `pip install faiss`."
) from e
@final
@dataclass
class FaissVectorDBStorage(BaseVectorStorage):
"""
A Faiss-based Vector DB Storage for LightRAG.
Uses cosine similarity by storing normalized vectors in a Faiss index with inner product search.
"""
def __post_init__(self):
# Grab config values if available
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
# Where to save index file if you want persistent storage
self._faiss_index_file = os.path.join(
self.global_config["working_dir"], f"faiss_index_{self.namespace}.index"
)
self._meta_file = self._faiss_index_file + ".meta.json"
self._max_batch_size = self.global_config["embedding_batch_num"]
# Embedding dimension (e.g. 768) must match your embedding function
self._dim = self.embedding_func.embedding_dim
# Create an empty Faiss index for inner product (useful for normalized vectors = cosine similarity).
# If you have a large number of vectors, you might want IVF or other indexes.
# For demonstration, we use a simple IndexFlatIP.
self._index = faiss.IndexFlatIP(self._dim)
# Keep a local store for metadata, IDs, etc.
# Maps <int faiss_id> → metadata (including your original ID).
self._id_to_meta = {}
# Attempt to load an existing index + metadata from disk
self._load_faiss_index()
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""
Insert or update vectors in the Faiss index.
data: {
"custom_id_1": {
"content": <text>,
...metadata...
},
"custom_id_2": {
"content": <text>,
...metadata...
},
...
}
"""
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not data:
logger.warning("You are inserting empty data to the vector DB")
return []
current_time = time.time()
# Prepare data for embedding
list_data = []
contents = []
for k, v in data.items():
# Store only known meta fields if needed
meta = {mf: v[mf] for mf in self.meta_fields if mf in v}
meta["__id__"] = k
meta["__created_at__"] = current_time
list_data.append(meta)
contents.append(v["content"])
# Split into batches for embedding if needed
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
# Flatten the list of arrays
embeddings = np.concatenate(embeddings_list, axis=0)
if len(embeddings) != len(list_data):
logger.error(
f"Embedding size mismatch. Embeddings: {len(embeddings)}, Data: {len(list_data)}"
)
return []
# Normalize embeddings for cosine similarity (in-place)
faiss.normalize_L2(embeddings)
# Upsert logic:
# 1. Identify which vectors to remove if they exist
# 2. Remove them
# 3. Add the new vectors
existing_ids_to_remove = []
for meta, emb in zip(list_data, embeddings):
faiss_internal_id = self._find_faiss_id_by_custom_id(meta["__id__"])
if faiss_internal_id is not None:
existing_ids_to_remove.append(faiss_internal_id)
if existing_ids_to_remove:
self._remove_faiss_ids(existing_ids_to_remove)
# Step 2: Add new vectors
start_idx = self._index.ntotal
self._index.add(embeddings)
# Step 3: Store metadata + vector for each new ID
for i, meta in enumerate(list_data):
fid = start_idx + i
# Store the raw vector so we can rebuild if something is removed
meta["__vector__"] = embeddings[i].tolist()
self._id_to_meta[fid] = meta
logger.info(f"Upserted {len(list_data)} vectors into Faiss index.")
return [m["__id__"] for m in list_data]
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
"""
Search by a textual query; returns top_k results with their metadata + similarity distance.
"""
embedding = await self.embedding_func([query])
# embedding is shape (1, dim)
embedding = np.array(embedding, dtype=np.float32)
faiss.normalize_L2(embedding) # we do in-place normalization
logger.info(
f"Query: {query}, top_k: {top_k}, threshold: {self.cosine_better_than_threshold}"
)
# Perform the similarity search
distances, indices = self._index.search(embedding, top_k)
distances = distances[0]
indices = indices[0]
results = []
for dist, idx in zip(distances, indices):
if idx == -1:
# Faiss returns -1 if no neighbor
continue
# Cosine similarity threshold
if dist < self.cosine_better_than_threshold:
continue
meta = self._id_to_meta.get(idx, {})
results.append(
{
**meta,
"id": meta.get("__id__"),
"distance": float(dist),
"created_at": meta.get("__created_at__"),
}
)
return results
@property
def client_storage(self):
# Return whatever structure LightRAG might need for debugging
return {"data": list(self._id_to_meta.values())}
async def delete(self, ids: list[str]):
"""
Delete vectors for the provided custom IDs.
"""
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
to_remove = []
for cid in ids:
fid = self._find_faiss_id_by_custom_id(cid)
if fid is not None:
to_remove.append(fid)
if to_remove:
self._remove_faiss_ids(to_remove)
logger.info(
f"Successfully deleted {len(to_remove)} vectors from {self.namespace}"
)
async def delete_entity(self, entity_name: str) -> None:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
await self.delete([entity_id])
async def delete_entity_relation(self, entity_name: str) -> None:
"""
Delete relations for a given entity by scanning metadata.
"""
logger.debug(f"Searching relations for entity {entity_name}")
relations = []
for fid, meta in self._id_to_meta.items():
if meta.get("src_id") == entity_name or meta.get("tgt_id") == entity_name:
relations.append(fid)
logger.debug(f"Found {len(relations)} relations for {entity_name}")
if relations:
self._remove_faiss_ids(relations)
logger.debug(f"Deleted {len(relations)} relations for {entity_name}")
async def index_done_callback(self) -> None:
self._save_faiss_index()
# --------------------------------------------------------------------------------
# Internal helper methods
# --------------------------------------------------------------------------------
def _find_faiss_id_by_custom_id(self, custom_id: str):
"""
Return the Faiss internal ID for a given custom ID, or None if not found.
"""
for fid, meta in self._id_to_meta.items():
if meta.get("__id__") == custom_id:
return fid
return None
def _remove_faiss_ids(self, fid_list):
"""
Remove a list of internal Faiss IDs from the index.
Because IndexFlatIP doesn't support 'removals',
we rebuild the index excluding those vectors.
"""
keep_fids = [fid for fid in self._id_to_meta if fid not in fid_list]
# Rebuild the index
vectors_to_keep = []
new_id_to_meta = {}
for new_fid, old_fid in enumerate(keep_fids):
vec_meta = self._id_to_meta[old_fid]
vectors_to_keep.append(vec_meta["__vector__"]) # stored as list
new_id_to_meta[new_fid] = vec_meta
# Re-init index
self._index = faiss.IndexFlatIP(self._dim)
if vectors_to_keep:
arr = np.array(vectors_to_keep, dtype=np.float32)
self._index.add(arr)
self._id_to_meta = new_id_to_meta
def _save_faiss_index(self):
"""
Save the current Faiss index + metadata to disk so it can persist across runs.
"""
faiss.write_index(self._index, self._faiss_index_file)
# Save metadata dict to JSON. Convert all keys to strings for JSON storage.
# _id_to_meta is { int: { '__id__': doc_id, '__vector__': [float,...], ... } }
# We'll keep the int -> dict, but JSON requires string keys.
serializable_dict = {}
for fid, meta in self._id_to_meta.items():
serializable_dict[str(fid)] = meta
with open(self._meta_file, "w", encoding="utf-8") as f:
json.dump(serializable_dict, f)
def _load_faiss_index(self):
"""
Load the Faiss index + metadata from disk if it exists,
and rebuild in-memory structures so we can query.
"""
if not os.path.exists(self._faiss_index_file):
logger.warning("No existing Faiss index file found. Starting fresh.")
return
try:
# Load the Faiss index
self._index = faiss.read_index(self._faiss_index_file)
# Load metadata
with open(self._meta_file, "r", encoding="utf-8") as f:
stored_dict = json.load(f)
# Convert string keys back to int
self._id_to_meta = {}
for fid_str, meta in stored_dict.items():
fid = int(fid_str)
self._id_to_meta[fid] = meta
logger.info(
f"Faiss index loaded with {self._index.ntotal} vectors from {self._faiss_index_file}"
)
except Exception as e:
logger.error(f"Failed to load Faiss index or metadata: {e}")
logger.warning("Starting with an empty Faiss index.")
self._index = faiss.IndexFlatIP(self._dim)
self._id_to_meta = {}