Files
lightrag/lightrag/kg/networkx_impl.py
yangdx b4543561f6 Limit subgraph size to 500 nodes in NetworkXStorage
- Add max_graph_nodes check
- Reduce subgraph by degree
- Log graph size reduction
2025-02-24 03:32:33 +08:00

290 lines
10 KiB
Python

import os
from dataclasses import dataclass
from typing import Any, final
import numpy as np
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import (
logger,
)
from lightrag.base import (
BaseGraphStorage,
)
import pipmaster as pm
if not pm.is_installed("networkx"):
pm.install("networkx")
if not pm.is_installed("graspologic"):
pm.install("graspologic")
import networkx as nx
from graspologic import embed
@final
@dataclass
class NetworkXStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name):
logger.info(
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
@staticmethod
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
Ensure an undirected graph with the same relationships will always be read the same way.
"""
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
sorted_nodes = graph.nodes(data=True)
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
fixed_graph.add_nodes_from(sorted_nodes)
edges = list(graph.edges(data=True))
if not graph.is_directed():
def _sort_source_target(edge):
source, target, edge_data = edge
if source > target:
temp = source
source = target
target = temp
return source, target, edge_data
edges = [_sort_source_target(edge) for edge in edges]
def _get_edge_key(source: Any, target: Any) -> str:
return f"{source} -> {target}"
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
fixed_graph.add_edges_from(edges)
return fixed_graph
def __post_init__(self):
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
self._graph = preloaded_graph or nx.Graph()
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
async def index_done_callback(self) -> None:
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
async def has_node(self, node_id: str) -> bool:
return self._graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
return self._graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> dict[str, str] | None:
return self._graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
return self._graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
return self._graph.degree(src_id) + self._graph.degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
return self._graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
if self._graph.has_node(source_node_id):
return list(self._graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
self._graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str) -> None:
if self._graph.has_node(node_id):
self._graph.remove_node(node_id)
logger.info(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
# @TODO: NOT USED
async def _node2vec_embed(self):
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node IDs to be deleted
"""
for node in nodes:
if self._graph.has_node(node):
self._graph.remove_node(node)
def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
for source, target in edges:
if self._graph.has_edge(source, target):
self._graph.remove_edge(source, target)
async def get_all_labels(self) -> list[str]:
"""
Get all node labels in the graph
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
# Get all labels from nodes
labels = set()
for node in self._graph.nodes():
# node_data = dict(self._graph.nodes[node])
# if "entity_type" in node_data:
# if isinstance(node_data["entity_type"], list):
# labels.update(node_data["entity_type"])
# else:
# labels.add(node_data["entity_type"])
labels.add(str(node)) # Add node id as a label
# Return sorted list
return sorted(list(labels))
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Args:
node_label: Label of the starting node
max_depth: Maximum depth of the subgraph
Returns:
KnowledgeGraph object containing nodes and edges
"""
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
# Handle special case for "*" label
if node_label == "*":
# For "*", return the entire graph including all nodes and edges
subgraph = self._graph.copy() # Create a copy to avoid modifying the original graph
else:
# Find nodes with matching node id (partial match)
nodes_to_explore = []
for n, attr in self._graph.nodes(data=True):
if node_label in str(n): # Use partial matching
nodes_to_explore.append(n)
if not nodes_to_explore:
logger.warning(f"No nodes found with label {node_label}")
return result
# Get subgraph using ego_graph
subgraph = nx.ego_graph(self._graph, nodes_to_explore[0], radius=max_depth)
# Check if number of nodes exceeds max_graph_nodes
max_graph_nodes=500
if len(subgraph.nodes()) > max_graph_nodes:
origin_nodes=len(subgraph.nodes())
node_degrees = dict(subgraph.degree())
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[:max_graph_nodes]
top_node_ids = [node[0] for node in top_nodes]
# Create new subgraph with only top nodes
subgraph = subgraph.subgraph(top_node_ids)
logger.info(f"Reduced graph from {origin_nodes} nodes to {max_graph_nodes} nodes by degree (depth={max_depth})")
# Add nodes to result
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node),
labels=[str(node)],
properties=node_properties
)
)
seen_nodes.add(str(node))
# Add edges to result
for edge in subgraph.edges():
source, target = edge
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
edge_data = dict(subgraph.edges[edge])
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
)
seen_edges.add(edge_id)
# logger.info(result.edges)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result