LightRAG API Server
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through Ollama.
Features
- 🔍 Multiple search modes (naive, local, global, hybrid)
- 📡 Streaming and non-streaming responses
- 📝 Document management (insert, batch upload, clear)
- ⚙️ Highly configurable model parameters
- 📚 Support for text and file uploads
- 🔧 RESTful API with automatic documentation
- 🚀 Built with FastAPI for high performance
Prerequisites
- Python 3.8+
- Ollama server running locally or remotely
- Required Python packages:
- fastapi
- uvicorn
- lightrag
- pydantic
Installation
- Clone the repository:
git clone https://github.com/yourusername/lightrag-server.git
cd lightrag-server
- Install dependencies:
pip install -r requirements.txt
- Make sure Ollama is running and accessible.
Configuration
The server can be configured using command-line arguments:
python rag_server.py --help
Available options:
Parameter | Default | Description |
---|---|---|
--host | 0.0.0.0 | Server host |
--port | 8000 | Server port |
--model | gemma2:2b | LLM model name |
--embedding-model | nomic-embed-text | Embedding model name |
--ollama-host | http://localhost:11434 | Ollama host URL |
--working-dir | ./dickens | Working directory for RAG |
--max-async | 4 | Maximum async operations |
--max-tokens | 32768 | Maximum token size |
--embedding-dim | 768 | Embedding dimensions |
--max-embed-tokens | 8192 | Maximum embedding token size |
--input-file | ./book.txt | Initial input file |
--log-level | INFO | Logging level |
Quick Start
- Basic usage with default settings:
python rag_server.py
- Custom configuration:
python rag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
- Using the launch script:
chmod +x launch_rag_server.sh
./launch_rag_server.sh
API Endpoints
Query Endpoints
POST /query
Query the RAG system with options for different search modes.
curl -X POST "http://localhost:8000/query" \
-H "Content-Type: application/json" \
-d '{"query": "Your question here", "mode": "hybrid"}'
POST /query/stream
Stream responses from the RAG system.
curl -X POST "http://localhost:8000/query/stream" \
-H "Content-Type: application/json" \
-d '{"query": "Your question here", "mode": "hybrid"}'
Document Management Endpoints
POST /documents/text
Insert text directly into the RAG system.
curl -X POST "http://localhost:8000/documents/text" \
-H "Content-Type: application/json" \
-d '{"text": "Your text content here", "description": "Optional description"}'
POST /documents/file
Upload a single file to the RAG system.
curl -X POST "http://localhost:8000/documents/file" \
-F "file=@/path/to/your/document.txt" \
-F "description=Optional description"
POST /documents/batch
Upload multiple files at once.
curl -X POST "http://localhost:8000/documents/batch" \
-F "files=@/path/to/doc1.txt" \
-F "files=@/path/to/doc2.txt"
DELETE /documents
Clear all documents from the RAG system.
curl -X DELETE "http://localhost:8000/documents"
Utility Endpoints
GET /health
Check server health and configuration.
curl "http://localhost:8000/health"
Development
Running in Development Mode
uvicorn rag_server:app --reload --port 8000
API Documentation
When the server is running, visit:
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.