inference running locally. use neo4j next

This commit is contained in:
Ken Wiltshire
2024-10-27 15:37:41 -04:00
parent cc45ea7310
commit 01b7df7afa
8 changed files with 98 additions and 76 deletions

3
.gitignore vendored
View File

@@ -4,4 +4,5 @@ dickens/
book.txt
lightrag-dev/
.idea/
dist/
dist/
env/

View File

@@ -1,5 +1,27 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
print ("init package vars here. ......")
from .neo4j import GraphStorage as Neo4JStorage
# import sys
# import importlib
# # Specify the path to the directory containing the module
# # Add the directory to the system path
# module_dir = '/Users/kenwiltshire/documents/dev/LightRag/lightrag/kg'
# sys.path.append(module_dir)
# # Specify the module name
# module_name = 'neo4j'
# # Import the module
# spec = importlib.util.spec_from_file_location(module_name, f'{module_dir}/{module_name}.py')
# Neo4JStorage = importlib.util.module_from_spec(spec)
# spec.loader.exec_module(Neo4JStorage)
# Relative imports are still possible by adding a leading period to the module name when using the from ... import form:
# # Import names from pkg.string
# from .string import name1, name2
# # Import pkg.string
# from . import string
__version__ = "0.0.7"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -3,11 +3,15 @@ import html
import os
from dataclasses import dataclass
from typing import Any, Union, cast
import networkx as nx
import numpy as np
from nano_vectordb import NanoVectorDB
from .utils import load_json, logger, write_json
# import package.common.utils as utils
from lightrag.utils import load_json, logger, write_json
from ..base import (
BaseGraphStorage
)
@@ -22,10 +26,10 @@ PASSWORD = "your_password"
@dataclass
class GraphStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
# def load_nx_graph(file_name) -> nx.Graph:
# if os.path.exists(file_name):
# return nx.read_graphml(file_name)
# return None
def __post_init__(self):
# self._graph = preloaded_graph or nx.Graph()
@@ -102,7 +106,7 @@ class GraphStorage(BaseGraphStorage):
result = session.run(
"""MATCH (n1:{node_label1})-[r]-(n2:{node_label2})
RETURN count(r) AS degree"""
.format(node_label1=node_label1, node_label2=node_label2)
.format(entity_name__label_source=entity_name__label_source, entity_name_label_target=entity_name_label_target)
)
record = result.single()
return record["degree"]
@@ -263,7 +267,7 @@ class GraphStorage(BaseGraphStorage):
with self._driver.session() as session:
#Define the Cypher query
options = self.global_config["node2vec_params"]
query = f"""CALL gds.node2vec.stream('myGraph', {**options})
query = f"""CALL gds.node2vec.stream('myGraph', {options}) # **options
YIELD nodeId, embedding
RETURN nodeId, embedding"""
# Run the query and process the results

View File

@@ -1,5 +1,6 @@
import asyncio
import os
import importlib
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
@@ -23,6 +24,11 @@ from .storage import (
NanoVectorDBStorage,
NetworkXStorage,
)
from .kg.neo4j import (
GraphStorage as Neo4JStorage
)
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
@@ -93,7 +99,14 @@ class LightRAG:
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
vector_db_storage_cls: Type[BaseVectorStorage] = NanoVectorDBStorage
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
# module = importlib.import_module('kg.neo4j')
# Neo4JStorage = getattr(module, 'GraphStorage')
if True==False:
graph_storage_cls: Type[BaseGraphStorage] = Neo4JStorage
else:
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
enable_llm_cache: bool = True
# extension

View File

@@ -72,7 +72,9 @@ async def openai_complete_if_cache(
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
#kw_
wait=wait_exponential(multiplier=1, min=4, max=60),
# wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def azure_openai_complete_if_cache(model,

View File

@@ -6,8 +6,6 @@ from typing import Any, Union, cast
import networkx as nx
import numpy as np
from nano_vectordb import NanoVectorDB
from kg.neo4j import GraphStorage
from .utils import load_json, logger, write_json
from .base import (
@@ -99,66 +97,14 @@ class NanoVectorDBStorage(BaseVectorStorage):
d["__vector__"] = embeddings[i]
results = self._client.upsert(datas=list_data)
return results
@dataclass
class PineConeVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
self._client_file_name = os.path.join(
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
)
self._max_batch_size = self.global_config["embedding_batch_num"]
self._client = NanoVectorDB(
self.embedding_func.embedding_dim, storage_file=self._client_file_name
)
import os
from pinecone import Pinecone
pc = Pinecone() #api_key=os.environ.get('PINECONE_API_KEY'))
# From here on, everything is identical to the REST-based SDK.
self._client = pc.Index(host=self._client_pinecone_host)#'my-index-8833ca1.svc.us-east1-gcp.pinecone.io')
self.cosine_better_than_threshold = self.global_config.get(
"cosine_better_than_threshold", self.cosine_better_than_threshold
)
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
# self._client.upsert(vectors=[]) pinecone
results = self._client.upsert(datas=list_data)
return results
async def query(self, query: str, top_k=5):
embedding = await self.embedding_func([query])
embedding = embedding[0]
# self._client.query(vector=[...], top_key=10) pinecone
results = self._client.query(
vector=embedding,
query=embedding,
top_k=top_k,
better_than_threshold=self.cosine_better_than_threshold, ???
better_than_threshold=self.cosine_better_than_threshold,
)
results = [
{**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
@@ -166,8 +112,7 @@ class PineConeVectorDBStorage(BaseVectorStorage):
return results
async def index_done_callback(self):
print("self._client.save()")
# self._client.save()
self._client.save()
@dataclass
@@ -298,5 +243,3 @@ class NetworkXStorage(BaseGraphStorage):
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids

View File

@@ -12,4 +12,5 @@ torch
transformers
xxhash
pyvis
aiohttp
aiohttp
neo4j

36
test.py Normal file
View File

@@ -0,0 +1,36 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))