Merge pull request #1 from ArindamRoy23/document_query_filter

Document query filter
This commit is contained in:
ArindamRoy23
2025-03-09 01:58:04 +05:30
committed by GitHub
6 changed files with 178 additions and 52 deletions

21
.gitignore vendored
View File

@@ -64,3 +64,24 @@ gui/
# unit-test files
test_*
Miniconda3-latest-Linux-x86_64.sh
requirements_basic.txt
requirements.txt
examples/test_chromadb.py
examples/test_faiss.py
examples/test_neo4j.py
.gitignore
requirements.txt
examples/test_chromadb.py
examples/test_faiss.py
examples/*
tests/test_lightrag_ollama_chat.py
requirements.txt
requirements.txt
examples/test_chromadb.py
examples/test_faiss.py
examples/test_neo4j.py
tests/test_lightrag_ollama_chat.py
examples/test_chromadb.py
examples/test_faiss.py
examples/test_neo4j.py

View File

@@ -81,6 +81,9 @@ class QueryParam:
history_turns: int = 3
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
ids: list[str] | None = None
"""List of ids to filter the results."""
@dataclass
class StorageNameSpace(ABC):
@@ -105,9 +108,8 @@ class BaseVectorStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
cosine_better_than_threshold: float = field(default=0.2)
meta_fields: set[str] = field(default_factory=set)
@abstractmethod
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
"""Query the vector storage and retrieve top_k results."""
@abstractmethod

View File

@@ -438,6 +438,8 @@ class PGVectorStorage(BaseVectorStorage):
"entity_name": item["entity_name"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
"chunk_id": item["source_id"],
#TODO: add document_id
}
return upsert_sql, data
@@ -450,6 +452,8 @@ class PGVectorStorage(BaseVectorStorage):
"target_id": item["tgt_id"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
"chunk_id": item["source_id"]
#TODO: add document_id
}
return upsert_sql, data
@@ -492,13 +496,19 @@ class PGVectorStorage(BaseVectorStorage):
await self.db.execute(upsert_sql, data)
#################### query method ###############
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
embedding_string = ",".join(map(str, embedding))
if ids:
formatted_ids = ",".join(f"'{id}'" for id in ids)
else:
formatted_ids = "NULL"
sql = SQL_TEMPLATES[self.base_namespace].format(
embedding_string=embedding_string
embedding_string=embedding_string,
doc_ids=formatted_ids
)
params = {
"workspace": self.db.workspace,
@@ -1387,6 +1397,7 @@ TABLES = {
content_vector VECTOR,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
chunk_id VARCHAR(255) NULL,
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
)"""
},
@@ -1400,6 +1411,7 @@ TABLES = {
content_vector VECTOR,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
chunk_id VARCHAR(255) NULL,
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
)"""
},
@@ -1482,8 +1494,9 @@ SQL_TEMPLATES = {
content_vector=EXCLUDED.content_vector,
update_time = CURRENT_TIMESTAMP
""",
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content, content_vector)
VALUES ($1, $2, $3, $4, $5)
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
content_vector, chunk_id)
VALUES ($1, $2, $3, $4, $5, $6)
ON CONFLICT (workspace,id) DO UPDATE
SET entity_name=EXCLUDED.entity_name,
content=EXCLUDED.content,
@@ -1491,8 +1504,8 @@ SQL_TEMPLATES = {
update_time=CURRENT_TIMESTAMP
""",
"upsert_relationship": """INSERT INTO LIGHTRAG_VDB_RELATION (workspace, id, source_id,
target_id, content, content_vector)
VALUES ($1, $2, $3, $4, $5, $6)
target_id, content, content_vector, chunk_id)
VALUES ($1, $2, $3, $4, $5, $6, $7)
ON CONFLICT (workspace,id) DO UPDATE
SET source_id=EXCLUDED.source_id,
target_id=EXCLUDED.target_id,
@@ -1500,21 +1513,21 @@ SQL_TEMPLATES = {
content_vector=EXCLUDED.content_vector, update_time = CURRENT_TIMESTAMP
""",
# SQL for VectorStorage
"entities": """SELECT entity_name FROM
(SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
"relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
(SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_RELATION where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
"chunks": """SELECT id FROM
(SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
# "entities": """SELECT entity_name FROM
# (SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
# FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
# """,
# "relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
# (SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
# FROM LIGHTRAG_VDB_RELATION where workspace=$1)
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
# """,
# "chunks": """SELECT id FROM
# (SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
# FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
# """,
# DROP tables
"drop_all": """
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
@@ -1538,4 +1551,56 @@ SQL_TEMPLATES = {
"drop_vdb_relation": """
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
""",
}
"relationships": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
)
SELECT source_id as src_id, target_id as tgt_id
FROM (
SELECT r.id, r.source_id, r.target_id, 1 - (r.content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_RELATION r
WHERE r.workspace=$1
AND r.chunk_id IN (SELECT chunk_id FROM relevant_chunks)
) filtered
WHERE distance>$2
ORDER BY distance DESC
LIMIT $3
""",
"entities":
'''
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
)
SELECT entity_name FROM
(
SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_ENTITY
where workspace=$1
AND chunk_id IN (SELECT chunk_id FROM relevant_chunks)
)
WHERE distance>$2
ORDER BY distance DESC
LIMIT $3
''',
'chunks': """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
)
SELECT id FROM
(
SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_DOC_CHUNKS
where workspace=$1
AND id IN (SELECT chunk_id FROM relevant_chunks)
)
WHERE distance>$2
ORDER BY distance DESC
LIMIT $3
"""
}

View File

@@ -892,7 +892,8 @@ async def mix_kg_vector_query(
try:
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
mix_topk = min(10, query_param.top_k)
results = await chunks_vdb.query(augmented_query, top_k=mix_topk)
# TODO: add ids to the query
results = await chunks_vdb.query(augmented_query, top_k=mix_topk, ids = query_param.ids)
if not results:
return None
@@ -1016,6 +1017,7 @@ async def _build_query_context(
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage,
query_param: QueryParam,
ids: list[str] = None,
):
if query_param.mode == "local":
entities_context, relations_context, text_units_context = await _get_node_data(
@@ -1100,7 +1102,9 @@ async def _get_node_data(
logger.info(
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
)
results = await entities_vdb.query(query, top_k=query_param.top_k)
results = await entities_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
if not len(results):
return "", "", ""
# get entity information
@@ -1352,7 +1356,8 @@ async def _get_edge_data(
logger.info(
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
)
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = query_param.ids)
if not len(results):
return "", "", ""
@@ -1601,7 +1606,7 @@ async def naive_query(
if cached_response is not None:
return cached_response
results = await chunks_vdb.query(query, top_k=query_param.top_k)
results = await chunks_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
if not len(results):
return PROMPTS["fail_response"]

View File

@@ -1,17 +1,50 @@
aiohttp
configparser
future
# Basic modules
gensim
pipmaster
pydantic
python-dotenv
setuptools
tenacity
# LLM packages
tiktoken
# Extra libraries are installed when needed using pipmaster
aioboto3==14.1.0
aiofiles==24.1.0
aiohttp==3.11.13
ascii_colors==0.5.2
asyncpg==0.30.0
chromadb==0.6.3
community==1.0.0b1
docx==0.2.4
# faiss
fastapi==0.115.11
glm==0.4.4
graspologic==3.4.1
gunicorn==23.0.0
httpx==0.28.1
imgui_bundle==1.6.2
jsonlines==4.0.0
llama_index==0.12.22
moderngl==5.12.0
motor==3.7.0
nano_vectordb==0.0.4.3
neo4j==5.28.1
nest_asyncio==1.6.0
networkx==3.4.2
numpy
openpyxl==3.1.5
oracledb==3.0.0
Pillow==11.1.0
pipmaster==0.4.0
protobuf
psutil==7.0.0
psycopg==3.2.5
psycopg_pool==3.2.6
pydantic==2.10.6
pymilvus==2.5.4
pymongo==4.11.2
PyPDF2==3.0.1
python-dotenv==1.0.1
pyvis==0.3.2
qdrant_client==1.13.3
redis==5.2.1
Requests==2.32.3
sentence_transformers==3.4.1
setuptools==75.8.0
SQLAlchemy==2.0.38
starlette==0.46.0
tenacity==9.0.0
tiktoken==0.9.0
torch==2.6.0
transformers==4.49.0
uvicorn==0.34.0

View File

@@ -38,16 +38,16 @@ class McpError(Exception):
DEFAULT_CONFIG = {
"server": {
"host": "localhost",
"port": 9621,
"model": "lightrag:latest",
"host": "host.docker.internal",
"port": 11434,
"model": "llama3.2:latest",
"timeout": 300,
"max_retries": 1,
"retry_delay": 1,
},
"test_cases": {
"basic": {"query": "唐僧有几个徒弟"},
"generate": {"query": "电视剧西游记导演是谁"},
"basic": {"query": "How many disciples did Tang Seng have?"},
"generate": {"query": "Who directed the TV series Journey to the West?"},
},
}
@@ -763,8 +763,8 @@ def parse_args() -> argparse.Namespace:
Configuration file (config.json):
{
"server": {
"host": "localhost", # Server address
"port": 9621, # Server port
"host": "host.docker.internal", # Server address
"port": 11434, # Server port
"model": "lightrag:latest" # Default model name
},
"test_cases": {