Merge pull request #1 from ArindamRoy23/document_query_filter
Document query filter
This commit is contained in:
21
.gitignore
vendored
21
.gitignore
vendored
@@ -64,3 +64,24 @@ gui/
|
||||
|
||||
# unit-test files
|
||||
test_*
|
||||
Miniconda3-latest-Linux-x86_64.sh
|
||||
requirements_basic.txt
|
||||
requirements.txt
|
||||
examples/test_chromadb.py
|
||||
examples/test_faiss.py
|
||||
examples/test_neo4j.py
|
||||
.gitignore
|
||||
requirements.txt
|
||||
examples/test_chromadb.py
|
||||
examples/test_faiss.py
|
||||
examples/*
|
||||
tests/test_lightrag_ollama_chat.py
|
||||
requirements.txt
|
||||
requirements.txt
|
||||
examples/test_chromadb.py
|
||||
examples/test_faiss.py
|
||||
examples/test_neo4j.py
|
||||
tests/test_lightrag_ollama_chat.py
|
||||
examples/test_chromadb.py
|
||||
examples/test_faiss.py
|
||||
examples/test_neo4j.py
|
||||
|
@@ -81,6 +81,9 @@ class QueryParam:
|
||||
history_turns: int = 3
|
||||
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
||||
|
||||
ids: list[str] | None = None
|
||||
"""List of ids to filter the results."""
|
||||
|
||||
|
||||
@dataclass
|
||||
class StorageNameSpace(ABC):
|
||||
@@ -105,9 +108,8 @@ class BaseVectorStorage(StorageNameSpace, ABC):
|
||||
embedding_func: EmbeddingFunc
|
||||
cosine_better_than_threshold: float = field(default=0.2)
|
||||
meta_fields: set[str] = field(default_factory=set)
|
||||
|
||||
@abstractmethod
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||
"""Query the vector storage and retrieve top_k results."""
|
||||
|
||||
@abstractmethod
|
||||
|
@@ -438,6 +438,8 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
"entity_name": item["entity_name"],
|
||||
"content": item["content"],
|
||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||
"chunk_id": item["source_id"],
|
||||
#TODO: add document_id
|
||||
}
|
||||
return upsert_sql, data
|
||||
|
||||
@@ -450,6 +452,8 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
"target_id": item["tgt_id"],
|
||||
"content": item["content"],
|
||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||
"chunk_id": item["source_id"]
|
||||
#TODO: add document_id
|
||||
}
|
||||
return upsert_sql, data
|
||||
|
||||
@@ -492,13 +496,19 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
await self.db.execute(upsert_sql, data)
|
||||
|
||||
#################### query method ###############
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||
embeddings = await self.embedding_func([query])
|
||||
embedding = embeddings[0]
|
||||
embedding_string = ",".join(map(str, embedding))
|
||||
|
||||
if ids:
|
||||
formatted_ids = ",".join(f"'{id}'" for id in ids)
|
||||
else:
|
||||
formatted_ids = "NULL"
|
||||
|
||||
sql = SQL_TEMPLATES[self.base_namespace].format(
|
||||
embedding_string=embedding_string
|
||||
embedding_string=embedding_string,
|
||||
doc_ids=formatted_ids
|
||||
)
|
||||
params = {
|
||||
"workspace": self.db.workspace,
|
||||
@@ -1387,6 +1397,7 @@ TABLES = {
|
||||
content_vector VECTOR,
|
||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
update_time TIMESTAMP,
|
||||
chunk_id VARCHAR(255) NULL,
|
||||
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
||||
)"""
|
||||
},
|
||||
@@ -1400,6 +1411,7 @@ TABLES = {
|
||||
content_vector VECTOR,
|
||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
update_time TIMESTAMP,
|
||||
chunk_id VARCHAR(255) NULL,
|
||||
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
||||
)"""
|
||||
},
|
||||
@@ -1482,8 +1494,9 @@ SQL_TEMPLATES = {
|
||||
content_vector=EXCLUDED.content_vector,
|
||||
update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content, content_vector)
|
||||
VALUES ($1, $2, $3, $4, $5)
|
||||
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
|
||||
content_vector, chunk_id)
|
||||
VALUES ($1, $2, $3, $4, $5, $6)
|
||||
ON CONFLICT (workspace,id) DO UPDATE
|
||||
SET entity_name=EXCLUDED.entity_name,
|
||||
content=EXCLUDED.content,
|
||||
@@ -1491,8 +1504,8 @@ SQL_TEMPLATES = {
|
||||
update_time=CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_relationship": """INSERT INTO LIGHTRAG_VDB_RELATION (workspace, id, source_id,
|
||||
target_id, content, content_vector)
|
||||
VALUES ($1, $2, $3, $4, $5, $6)
|
||||
target_id, content, content_vector, chunk_id)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7)
|
||||
ON CONFLICT (workspace,id) DO UPDATE
|
||||
SET source_id=EXCLUDED.source_id,
|
||||
target_id=EXCLUDED.target_id,
|
||||
@@ -1500,21 +1513,21 @@ SQL_TEMPLATES = {
|
||||
content_vector=EXCLUDED.content_vector, update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
# SQL for VectorStorage
|
||||
"entities": """SELECT entity_name FROM
|
||||
(SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
|
||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
""",
|
||||
"relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
|
||||
(SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_RELATION where workspace=$1)
|
||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
""",
|
||||
"chunks": """SELECT id FROM
|
||||
(SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
|
||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
""",
|
||||
# "entities": """SELECT entity_name FROM
|
||||
# (SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
# FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
|
||||
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
# """,
|
||||
# "relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
|
||||
# (SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
# FROM LIGHTRAG_VDB_RELATION where workspace=$1)
|
||||
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
# """,
|
||||
# "chunks": """SELECT id FROM
|
||||
# (SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
# FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
|
||||
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||
# """,
|
||||
# DROP tables
|
||||
"drop_all": """
|
||||
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
|
||||
@@ -1538,4 +1551,56 @@ SQL_TEMPLATES = {
|
||||
"drop_vdb_relation": """
|
||||
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
|
||||
""",
|
||||
}
|
||||
"relationships": """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT source_id as src_id, target_id as tgt_id
|
||||
FROM (
|
||||
SELECT r.id, r.source_id, r.target_id, 1 - (r.content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_RELATION r
|
||||
WHERE r.workspace=$1
|
||||
AND r.chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
) filtered
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
""",
|
||||
"entities":
|
||||
'''
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT entity_name FROM
|
||||
(
|
||||
SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_ENTITY
|
||||
where workspace=$1
|
||||
AND chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
)
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
''',
|
||||
'chunks': """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT id FROM
|
||||
(
|
||||
SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
where workspace=$1
|
||||
AND id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
)
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
"""
|
||||
}
|
@@ -892,7 +892,8 @@ async def mix_kg_vector_query(
|
||||
try:
|
||||
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
|
||||
mix_topk = min(10, query_param.top_k)
|
||||
results = await chunks_vdb.query(augmented_query, top_k=mix_topk)
|
||||
# TODO: add ids to the query
|
||||
results = await chunks_vdb.query(augmented_query, top_k=mix_topk, ids = query_param.ids)
|
||||
if not results:
|
||||
return None
|
||||
|
||||
@@ -1016,6 +1017,7 @@ async def _build_query_context(
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage,
|
||||
query_param: QueryParam,
|
||||
ids: list[str] = None,
|
||||
):
|
||||
if query_param.mode == "local":
|
||||
entities_context, relations_context, text_units_context = await _get_node_data(
|
||||
@@ -1100,7 +1102,9 @@ async def _get_node_data(
|
||||
logger.info(
|
||||
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
|
||||
)
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
||||
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
# get entity information
|
||||
@@ -1352,7 +1356,8 @@ async def _get_edge_data(
|
||||
logger.info(
|
||||
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
||||
)
|
||||
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
||||
|
||||
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = query_param.ids)
|
||||
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
@@ -1601,7 +1606,7 @@ async def naive_query(
|
||||
if cached_response is not None:
|
||||
return cached_response
|
||||
|
||||
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
||||
results = await chunks_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||
if not len(results):
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
|
@@ -1,17 +1,50 @@
|
||||
aiohttp
|
||||
configparser
|
||||
future
|
||||
|
||||
# Basic modules
|
||||
gensim
|
||||
pipmaster
|
||||
pydantic
|
||||
python-dotenv
|
||||
|
||||
setuptools
|
||||
tenacity
|
||||
|
||||
# LLM packages
|
||||
tiktoken
|
||||
|
||||
# Extra libraries are installed when needed using pipmaster
|
||||
aioboto3==14.1.0
|
||||
aiofiles==24.1.0
|
||||
aiohttp==3.11.13
|
||||
ascii_colors==0.5.2
|
||||
asyncpg==0.30.0
|
||||
chromadb==0.6.3
|
||||
community==1.0.0b1
|
||||
docx==0.2.4
|
||||
# faiss
|
||||
fastapi==0.115.11
|
||||
glm==0.4.4
|
||||
graspologic==3.4.1
|
||||
gunicorn==23.0.0
|
||||
httpx==0.28.1
|
||||
imgui_bundle==1.6.2
|
||||
jsonlines==4.0.0
|
||||
llama_index==0.12.22
|
||||
moderngl==5.12.0
|
||||
motor==3.7.0
|
||||
nano_vectordb==0.0.4.3
|
||||
neo4j==5.28.1
|
||||
nest_asyncio==1.6.0
|
||||
networkx==3.4.2
|
||||
numpy
|
||||
openpyxl==3.1.5
|
||||
oracledb==3.0.0
|
||||
Pillow==11.1.0
|
||||
pipmaster==0.4.0
|
||||
protobuf
|
||||
psutil==7.0.0
|
||||
psycopg==3.2.5
|
||||
psycopg_pool==3.2.6
|
||||
pydantic==2.10.6
|
||||
pymilvus==2.5.4
|
||||
pymongo==4.11.2
|
||||
PyPDF2==3.0.1
|
||||
python-dotenv==1.0.1
|
||||
pyvis==0.3.2
|
||||
qdrant_client==1.13.3
|
||||
redis==5.2.1
|
||||
Requests==2.32.3
|
||||
sentence_transformers==3.4.1
|
||||
setuptools==75.8.0
|
||||
SQLAlchemy==2.0.38
|
||||
starlette==0.46.0
|
||||
tenacity==9.0.0
|
||||
tiktoken==0.9.0
|
||||
torch==2.6.0
|
||||
transformers==4.49.0
|
||||
uvicorn==0.34.0
|
||||
|
@@ -38,16 +38,16 @@ class McpError(Exception):
|
||||
|
||||
DEFAULT_CONFIG = {
|
||||
"server": {
|
||||
"host": "localhost",
|
||||
"port": 9621,
|
||||
"model": "lightrag:latest",
|
||||
"host": "host.docker.internal",
|
||||
"port": 11434,
|
||||
"model": "llama3.2:latest",
|
||||
"timeout": 300,
|
||||
"max_retries": 1,
|
||||
"retry_delay": 1,
|
||||
},
|
||||
"test_cases": {
|
||||
"basic": {"query": "唐僧有几个徒弟"},
|
||||
"generate": {"query": "电视剧西游记导演是谁"},
|
||||
"basic": {"query": "How many disciples did Tang Seng have?"},
|
||||
"generate": {"query": "Who directed the TV series Journey to the West?"},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -763,8 +763,8 @@ def parse_args() -> argparse.Namespace:
|
||||
Configuration file (config.json):
|
||||
{
|
||||
"server": {
|
||||
"host": "localhost", # Server address
|
||||
"port": 9621, # Server port
|
||||
"host": "host.docker.internal", # Server address
|
||||
"port": 11434, # Server port
|
||||
"model": "lightrag:latest" # Default model name
|
||||
},
|
||||
"test_cases": {
|
||||
|
Reference in New Issue
Block a user