创建yangdx分支,并添加测试脚本
This commit is contained in:
@@ -695,7 +695,7 @@ Output the results in the following structure:
|
||||
```
|
||||
</details>
|
||||
|
||||
### Batch Eval
|
||||
### Batch Eval
|
||||
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
|
||||
|
||||
<details>
|
||||
@@ -746,6 +746,7 @@ Output your evaluation in the following JSON format:
|
||||
</details>
|
||||
|
||||
### Overall Performance Table
|
||||
|
||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
||||
|
70
examples/lightrag_yangdx.py
Normal file
70
examples/lightrag_yangdx.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import asyncio
|
||||
import os
|
||||
import inspect
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:2b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
Reference in New Issue
Block a user