创建yangdx分支,并添加测试脚本
This commit is contained in:
@@ -746,6 +746,7 @@ Output your evaluation in the following JSON format:
|
|||||||
</details>
|
</details>
|
||||||
|
|
||||||
### Overall Performance Table
|
### Overall Performance Table
|
||||||
|
|
||||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||||
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
||||||
|
70
examples/lightrag_yangdx.py
Normal file
70
examples/lightrag_yangdx.py
Normal file
@@ -0,0 +1,70 @@
|
|||||||
|
import asyncio
|
||||||
|
import os
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
|
|
||||||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=ollama_model_complete,
|
||||||
|
llm_model_name="gemma2:2b",
|
||||||
|
llm_model_max_async=4,
|
||||||
|
llm_model_max_token_size=32768,
|
||||||
|
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||||
|
rag.insert(f.read())
|
||||||
|
|
||||||
|
# Perform naive search
|
||||||
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform local search
|
||||||
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform global search
|
||||||
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform hybrid search
|
||||||
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||||
|
)
|
||||||
|
|
||||||
|
# stream response
|
||||||
|
resp = rag.query(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode="hybrid", stream=True),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def print_stream(stream):
|
||||||
|
async for chunk in stream:
|
||||||
|
print(chunk, end="", flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
if inspect.isasyncgen(resp):
|
||||||
|
asyncio.run(print_stream(resp))
|
||||||
|
else:
|
||||||
|
print(resp)
|
Reference in New Issue
Block a user