Merge pull request #430 from zhenya-zhu/ollama-api-service-demo
Add a ollama API service demo
This commit is contained in:
164
examples/lightrag_api_ollama_demo.py
Normal file
164
examples/lightrag_api_ollama_demo.py
Normal file
@@ -0,0 +1,164 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
import aiofiles
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
|
||||
DEFAULT_INPUT_FILE = "book.txt"
|
||||
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
||||
print(f"INPUT_FILE: {INPUT_FILE}")
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:9b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=8192,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
# Data models
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: str = "hybrid"
|
||||
only_need_context: bool = False
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
class Response(BaseModel):
|
||||
status: str
|
||||
data: Optional[str] = None
|
||||
message: Optional[str] = None
|
||||
|
||||
|
||||
# API routes
|
||||
@app.post("/query", response_model=Response)
|
||||
async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
result = await loop.run_in_executor(
|
||||
None,
|
||||
lambda: rag.query(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode, only_need_context=request.only_need_context
|
||||
),
|
||||
),
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# insert by text
|
||||
@app.post("/insert", response_model=Response)
|
||||
async def insert_endpoint(request: InsertRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
||||
return Response(status="success", message="Text inserted successfully")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# insert by file in payload
|
||||
@app.post("/insert_file", response_model=Response)
|
||||
async def insert_file(file: UploadFile = File(...)):
|
||||
try:
|
||||
file_content = await file.read()
|
||||
# Read file content
|
||||
try:
|
||||
content = file_content.decode("utf-8")
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
content = file_content.decode("gbk")
|
||||
# Insert file content
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||
|
||||
return Response(
|
||||
status="success",
|
||||
message=f"File content from {file.filename} inserted successfully",
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# insert by local default file
|
||||
@app.post("/insert_default_file", response_model=Response)
|
||||
@app.get("/insert_default_file", response_model=Response)
|
||||
async def insert_default_file():
|
||||
try:
|
||||
# Read file content from book.txt
|
||||
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
|
||||
content = await file.read()
|
||||
print(f"read input file {INPUT_FILE} successfully")
|
||||
# Insert file content
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||
|
||||
return Response(
|
||||
status="success",
|
||||
message=f"File content from {INPUT_FILE} inserted successfully",
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||||
|
||||
# Usage example
|
||||
# To run the server, use the following command in your terminal:
|
||||
# python lightrag_api_openai_compatible_demo.py
|
||||
|
||||
# Example requests:
|
||||
# 1. Query:
|
||||
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
||||
|
||||
# 2. Insert text:
|
||||
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
||||
|
||||
# 3. Insert file:
|
||||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||||
|
||||
# 4. Health check:
|
||||
# curl -X GET "http://127.0.0.1:8020/health"
|
Reference in New Issue
Block a user