Merge branch 'HKUDS:main' into main

This commit is contained in:
jin
2025-01-16 09:59:27 +08:00
committed by GitHub
19 changed files with 2609 additions and 2396 deletions

171
README.md
View File

@@ -12,7 +12,7 @@
</p>
<p>
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
<img src="https://img.shields.io/badge/python->=3.10-blue">
<img src="https://img.shields.io/badge/python-3.10-blue">
<a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
<a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
</p>
@@ -26,7 +26,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
</div>
## 🎉 News
- [x] [2025.01.06]🎯📢LightRAG now supports [PostgreSQL for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-postgres-for-storage).
- [x] [2025.01.13]🎯📢Our team has released [MiniRAG](https://github.com/HKUDS/MiniRAG) making RAG simpler with small models.
- [x] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](#using-postgresql-for-storage).
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
@@ -361,6 +362,18 @@ see test_neo4j.py for a working example.
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
```
SET search_path = ag_catalog, "$user", public;
CREATE INDEX idx_entity ON dickens."Entity" USING gin (agtype_access_operator(properties, '"node_id"'));
```
* Known issue of the Apache AGE: The released versions got below issue:
> You might find that the properties of the nodes/edges are empty.
> It is a known issue of the release version: https://github.com/apache/age/pull/1721
>
> You can Compile the AGE from source code and fix it.
### Insert Custom KG
@@ -912,12 +925,14 @@ pip install -e ".[api]"
### Prerequisites
Before running any of the servers, ensure you have the corresponding backend service running:
Before running any of the servers, ensure you have the corresponding backend service running for both llm and embedding.
The new api allows you to mix different bindings for llm/embeddings.
For example, you have the possibility to use ollama for the embedding and openai for the llm.
#### For LoLLMs Server
- LoLLMs must be running and accessible
- Default connection: http://localhost:9600
- Configure using --lollms-host if running on a different host/port
- Configure using --llm-binding-host and/or --embedding-binding-host if running on a different host/port
#### For Ollama Server
- Ollama must be running and accessible
@@ -953,113 +968,96 @@ The output of the last command will give you the endpoint and the key for the Op
Each server has its own specific configuration options:
#### LoLLMs Server Options
| Parameter | Default | Description |
|-----------|---------|-------------|
| --host | 0.0.0.0 | RAG server host |
| --port | 9621 | RAG server port |
| --model | mistral-nemo:latest | LLM model name |
| --embedding-model | bge-m3:latest | Embedding model name |
| --lollms-host | http://localhost:9600 | LoLLMS backend URL |
| --working-dir | ./rag_storage | Working directory for RAG |
| --max-async | 4 | Maximum async operations |
| --max-tokens | 32768 | Maximum token size |
| --embedding-dim | 1024 | Embedding dimensions |
| --max-embed-tokens | 8192 | Maximum embedding token size |
| --input-file | ./book.txt | Initial input file |
| --log-level | INFO | Logging level |
| --key | none | Access Key to protect the lightrag service |
#### Ollama Server Options
| Parameter | Default | Description |
|-----------|---------|-------------|
| --host | 0.0.0.0 | RAG server host |
| --port | 9621 | RAG server port |
| --model | mistral-nemo:latest | LLM model name |
| --embedding-model | bge-m3:latest | Embedding model name |
| --ollama-host | http://localhost:11434 | Ollama backend URL |
| --working-dir | ./rag_storage | Working directory for RAG |
| --max-async | 4 | Maximum async operations |
| --max-tokens | 32768 | Maximum token size |
| --embedding-dim | 1024 | Embedding dimensions |
| --max-embed-tokens | 8192 | Maximum embedding token size |
| --input-file | ./book.txt | Initial input file |
| --log-level | INFO | Logging level |
| --key | none | Access Key to protect the lightrag service |
#### OpenAI Server Options
| Parameter | Default | Description |
|-----------|---------|-------------|
| --host | 0.0.0.0 | RAG server host |
| --port | 9621 | RAG server port |
| --model | gpt-4 | OpenAI model name |
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
| --working-dir | ./rag_storage | Working directory for RAG |
| --max-tokens | 32768 | Maximum token size |
| --max-embed-tokens | 8192 | Maximum embedding token size |
| --input-dir | ./inputs | Input directory for documents |
| --log-level | INFO | Logging level |
| --key | none | Access Key to protect the lightrag service |
#### OpenAI AZURE Server Options
#### LightRag Server Options
| Parameter | Default | Description |
|-----------|---------|-------------|
| --host | 0.0.0.0 | Server host |
| --port | 9621 | Server port |
| --model | gpt-4 | OpenAI model name |
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
| --working-dir | ./rag_storage | Working directory for RAG |
| --llm-binding | ollama | LLM binding to be used. Supported: lollms, ollama, openai |
| --llm-binding-host | (dynamic) | LLM server host URL. Defaults based on binding: http://localhost:11434 (ollama), http://localhost:9600 (lollms), https://api.openai.com/v1 (openai) |
| --llm-model | mistral-nemo:latest | LLM model name |
| --embedding-binding | ollama | Embedding binding to be used. Supported: lollms, ollama, openai |
| --embedding-binding-host | (dynamic) | Embedding server host URL. Defaults based on binding: http://localhost:11434 (ollama), http://localhost:9600 (lollms), https://api.openai.com/v1 (openai) |
| --embedding-model | bge-m3:latest | Embedding model name |
| --working-dir | ./rag_storage | Working directory for RAG storage |
| --input-dir | ./inputs | Directory containing input documents |
| --max-async | 4 | Maximum async operations |
| --max-tokens | 32768 | Maximum token size |
| --embedding-dim | 1024 | Embedding dimensions |
| --max-embed-tokens | 8192 | Maximum embedding token size |
| --input-dir | ./inputs | Input directory for documents |
| --enable-cache | True | Enable response cache |
| --log-level | INFO | Logging level |
| --key | none | Access Key to protect the lightrag service |
| --timeout | None | Timeout in seconds (useful when using slow AI). Use None for infinite timeout |
| --log-level | INFO | Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) |
| --key | None | API key for authentication. Protects lightrag server against unauthorized access |
| --ssl | False | Enable HTTPS |
| --ssl-certfile | None | Path to SSL certificate file (required if --ssl is enabled) |
| --ssl-keyfile | None | Path to SSL private key file (required if --ssl is enabled) |
For protecting the server using an authentication key, you can also use an environment variable named `LIGHTRAG_API_KEY`.
### Example Usage
#### LoLLMs RAG Server
#### Running a Lightrag server with ollama default local server as llm and embedding backends
Ollama is the default backend for both llm and embedding, so by default you can run lightrag-server with no parameters and the default ones will be used. Make sure ollama is installed and is running and default models are already installed on ollama.
```bash
# Custom configuration with specific model and working directory
lollms-lightrag-server --model mistral-nemo --port 8080 --working-dir ./custom_rag
# Run lightrag with ollama, mistral-nemo:latest for llm, and bge-m3:latest for embedding
lightrag-server
# Using specific models (ensure they are installed in your LoLLMs instance)
lollms-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
# Using specific models (ensure they are installed in your ollama instance)
lightrag-server --llm-model adrienbrault/nous-hermes2theta-llama3-8b:f16 --embedding-model nomic-embed-text --embedding-dim 1024
# Using specific models and an authentication key
lollms-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024 --key ky-mykey
# Using an authentication key
lightrag-server --key my-key
# Using lollms for llm and ollama for embedding
lightrag-server --llm-binding lollms
```
#### Ollama RAG Server
#### Running a Lightrag server with lollms default local server as llm and embedding backends
```bash
# Custom configuration with specific model and working directory
ollama-lightrag-server --model mistral-nemo:latest --port 8080 --working-dir ./custom_rag
# Run lightrag with lollms, mistral-nemo:latest for llm, and bge-m3:latest for embedding, use lollms for both llm and embedding
lightrag-server --llm-binding lollms --embedding-binding lollms
# Using specific models (ensure they are installed in your Ollama instance)
ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
# Using specific models (ensure they are installed in your ollama instance)
lightrag-server --llm-binding lollms --llm-model adrienbrault/nous-hermes2theta-llama3-8b:f16 --embedding-binding lollms --embedding-model nomic-embed-text --embedding-dim 1024
# Using an authentication key
lightrag-server --key my-key
# Using lollms for llm and openai for embedding
lightrag-server --llm-binding lollms --embedding-binding openai --embedding-model text-embedding-3-small
```
#### OpenAI RAG Server
#### Running a Lightrag server with openai server as llm and embedding backends
```bash
# Using GPT-4 with text-embedding-3-large
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
```
#### Azure OpenAI RAG Server
```bash
# Using GPT-4 with text-embedding-3-large
azure-openai-lightrag-server --model gpt-4o --port 8080 --working-dir ./custom_rag --embedding-model text-embedding-3-large
# Run lightrag with lollms, GPT-4o-mini for llm, and text-embedding-3-small for embedding, use openai for both llm and embedding
lightrag-server --llm-binding openai --llm-model GPT-4o-mini --embedding-binding openai --embedding-model text-embedding-3-small
# Using an authentication key
lightrag-server --llm-binding openai --llm-model GPT-4o-mini --embedding-binding openai --embedding-model text-embedding-3-small --key my-key
# Using lollms for llm and openai for embedding
lightrag-server --llm-binding lollms --embedding-binding openai --embedding-model text-embedding-3-small
```
#### Running a Lightrag server with azure openai server as llm and embedding backends
```bash
# Run lightrag with lollms, GPT-4o-mini for llm, and text-embedding-3-small for embedding, use openai for both llm and embedding
lightrag-server --llm-binding azure_openai --llm-model GPT-4o-mini --embedding-binding openai --embedding-model text-embedding-3-small
# Using an authentication key
lightrag-server --llm-binding azure_openai --llm-model GPT-4o-mini --embedding-binding azure_openai --embedding-model text-embedding-3-small --key my-key
# Using lollms for llm and azure_openai for embedding
lightrag-server --llm-binding lollms --embedding-binding azure_openai --embedding-model text-embedding-3-small
```
**Important Notes:**
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
@@ -1069,10 +1067,7 @@ azure-openai-lightrag-server --model gpt-4o --port 8080 --working-dir ./custom_r
For help on any server, use the --help flag:
```bash
lollms-lightrag-server --help
ollama-lightrag-server --help
openai-lightrag-server --help
azure-openai-lightrag-server --help
lightrag-server --help
```
Note: If you don't need the API functionality, you can install the base package without API support using:
@@ -1092,7 +1087,7 @@ Query the RAG system with options for different search modes.
```bash
curl -X POST "http://localhost:9621/query" \
-H "Content-Type: application/json" \
-d '{"query": "Your question here", "mode": "hybrid"}'
-d '{"query": "Your question here", "mode": "hybrid", ""}'
```
#### POST /query/stream

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "1.1.0"
__version__ = "1.1.1"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -1,532 +0,0 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import asyncio
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import (
azure_openai_complete_if_cache,
azure_openai_embedding,
)
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import os
from dotenv import load_dotenv
import inspect
import json
from fastapi.responses import StreamingResponse
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
load_dotenv()
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with OpenAI integration"
)
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument(
"--model", default="gpt-4o", help="OpenAI model name (default: gpt-4o)"
)
parser.add_argument(
"--embedding-model",
default="text-embedding-3-large",
help="OpenAI embedding model (default: text-embedding-3-large)",
)
# RAG configuration
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
parser.add_argument(
"--enable-cache",
default=True,
help="Enable response cache (default: True)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
only_need_context: bool = False
# stream: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
return no_auth
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
return api_key_auth
async def get_embedding_dim(embedding_model: str) -> int:
"""Get embedding dimensions for the specified model"""
test_text = ["This is a test sentence."]
embedding = await azure_openai_embedding(test_text, model=embedding_model)
return embedding.shape[1]
def create_app(args):
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version="1.0.0",
openapi_tags=[{"name": "api"}],
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Get embedding dimensions
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
async def async_openai_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
):
"""Async wrapper for OpenAI completion"""
kwargs.pop("keyword_extraction", None)
return await azure_openai_complete_if_cache(
args.model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=AZURE_OPENAI_ENDPOINT,
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_OPENAI_API_VERSION,
**kwargs,
)
# Initialize RAG with OpenAI configuration
rag = LightRAG(
enable_llm_cache=args.enable_cache,
working_dir=args.working_dir,
llm_model_func=async_openai_complete,
llm_model_name=args.model,
llm_model_max_token_size=args.max_tokens,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: azure_openai_embedding(
texts, model=args.embedding_model
),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/resetcache", dependencies=[Depends(optional_api_key)])
async def reset_cache():
"""Manually reset cache"""
try:
cachefile = args.working_dir + "/kv_store_llm_response_cache.json"
if os.path.exists(cachefile):
with open(cachefile, "w") as f:
f.write("{}")
return {"status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=False,
only_need_context=request.only_need_context,
),
)
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
if inspect.isasyncgen(response):
async def stream_generator():
async for chunk in response:
yield json.dumps({"data": chunk}) + "\n"
return StreamingResponse(
stream_generator(), media_type="application/json"
)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
await rag.ainsert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=1,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(files),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"embedding_dim": embedding_dim,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,842 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import lollms_model_complete, lollms_embed
from lightrag.llm import ollama_model_complete, ollama_embed
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
from lightrag.utils import EmbeddingFunc
from typing import Optional, List, Union
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import os
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
import pipmaster as pm
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": "http://localhost:11434",
"lollms": "http://localhost:9600",
"azure_openai": "https://api.openai.com/v1",
"openai": "https://api.openai.com/v1",
}
return default_hosts.get(
binding_type, "http://localhost:11434"
) # fallback to ollama if unknown
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Start by the bindings
parser.add_argument(
"--llm-binding",
default="ollama",
help="LLM binding to be used. Supported: lollms, ollama, openai (default: ollama)",
)
parser.add_argument(
"--embedding-binding",
default="ollama",
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: ollama)",
)
# Parse just these arguments first
temp_args, _ = parser.parse_known_args()
# Add remaining arguments with dynamic defaults for hosts
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# LLM Model configuration
default_llm_host = get_default_host(temp_args.llm_binding)
parser.add_argument(
"--llm-binding-host",
default=default_llm_host,
help=f"llm server host URL (default: {default_llm_host})",
)
parser.add_argument(
"--llm-model",
default="mistral-nemo:latest",
help="LLM model name (default: mistral-nemo:latest)",
)
# Embedding model configuration
default_embedding_host = get_default_host(temp_args.embedding_binding)
parser.add_argument(
"--embedding-binding-host",
default=default_embedding_host,
help=f"embedding server host URL (default: {default_embedding_host})",
)
parser.add_argument(
"--embedding-model",
default="bge-m3:latest",
help="Embedding model name (default: bge-m3:latest)",
)
def timeout_type(value):
if value is None or value == "None":
return None
return int(value)
parser.add_argument(
"--timeout",
default=None,
type=timeout_type,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
)
# RAG configuration
parser.add_argument(
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=1024,
help="Embedding dimensions (default: 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
# Optional https parameters
parser.add_argument(
"--ssl", action="store_true", help="Enable HTTPS (default: False)"
)
parser.add_argument(
"--ssl-certfile",
default=None,
help="Path to SSL certificate file (required if --ssl is enabled)",
)
parser.add_argument(
"--ssl-keyfile",
default=None,
help="Path to SSL private key file (required if --ssl is enabled)",
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(
self,
input_dir: str,
supported_extensions: tuple = (".txt", ".md", ".pdf", ".docx", ".pptx"),
):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
return no_auth
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
return api_key_auth
def create_app(args):
# Verify that bindings arer correctly setup
if args.llm_binding not in ["lollms", "ollama", "openai"]:
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai"]:
raise Exception("embedding binding not supported")
# Add SSL validation
if args.ssl:
if not args.ssl_certfile or not args.ssl_keyfile:
raise Exception(
"SSL certificate and key files must be provided when SSL is enabled"
)
if not os.path.exists(args.ssl_certfile):
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
if not os.path.exists(args.ssl_keyfile):
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version="1.0.2",
openapi_tags=[{"name": "api"}],
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Initialize RAG
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=lollms_model_complete
if args.llm_binding == "lollms"
else ollama_model_complete
if args.llm_binding == "ollama"
else azure_openai_complete_if_cache
if args.llm_binding == "azure_openai"
else openai_complete_if_cache,
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={
"host": args.llm_binding_host,
"timeout": args.timeout,
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
)
if args.llm_binding == "lollms"
else ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
)
if args.llm_binding == "ollama"
else azure_openai_embedding(
texts,
model=args.embedding_model, # no host is used for openai
)
if args.llm_binding == "azure_openai"
else openai_embedding(
texts,
model=args.embedding_model, # no host is used for openai
),
),
)
async def index_file(file_path: Union[str, Path]) -> None:
"""Index all files inside the folder with support for multiple file formats
Args:
file_path: Path to the file to be indexed (str or Path object)
Raises:
ValueError: If file format is not supported
FileNotFoundError: If file doesn't exist
"""
if not pm.is_installed("aiofiles"):
pm.install("aiofiles")
# Convert to Path object if string
file_path = Path(file_path)
# Check if file exists
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
content = ""
# Get file extension in lowercase
ext = file_path.suffix.lower()
match ext:
case ".txt" | ".md":
# Text files handling
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
# PDF handling
reader = PdfReader(str(file_path))
content = ""
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
# Word document handling
doc = Document(file_path)
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
# PowerPoint handling
prs = Presentation(file_path)
content = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
case _:
raise ValueError(f"Unsupported file format: {ext}")
# Insert content into RAG system
if content:
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Successfully indexed file: {file_path}")
else:
logging.warning(f"No content extracted from file: {file_path}")
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
await index_file(file_path)
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
await index_file(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
await index_file(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
await rag.ainsert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=1,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
"""Insert a file directly into the RAG system
Args:
file: Uploaded file
description: Optional description of the file
Returns:
InsertResponse: Status of the insertion operation
Raises:
HTTPException: For unsupported file types or processing errors
"""
try:
content = ""
# Get file extension in lowercase
ext = Path(file.filename).suffix.lower()
match ext:
case ".txt" | ".md":
# Text files handling
text_content = await file.read()
content = text_content.decode("utf-8")
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
from io import BytesIO
# Read PDF from memory
pdf_content = await file.read()
pdf_file = BytesIO(pdf_content)
reader = PdfReader(pdf_file)
content = ""
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
# Read DOCX from memory
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
from io import BytesIO
# Read PPTX from memory
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
content = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
case _:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
# Insert content into RAG system
if content:
# Add description if provided
if description:
content = f"{description}\n\n{content}"
await rag.ainsert(content)
logging.info(f"Successfully indexed file: {file.filename}")
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
else:
raise HTTPException(
status_code=400,
detail="No content could be extracted from the file",
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
logging.error(f"Error processing file {file.filename}: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
"""Process multiple files in batch mode
Args:
files: List of files to process
Returns:
InsertResponse: Status of the batch insertion operation
Raises:
HTTPException: For processing errors
"""
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = ""
ext = Path(file.filename).suffix.lower()
match ext:
case ".txt" | ".md":
text_content = await file.read()
content = text_content.decode("utf-8")
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
from io import BytesIO
pdf_content = await file.read()
pdf_file = BytesIO(pdf_content)
reader = PdfReader(pdf_file)
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
from io import BytesIO
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
case _:
failed_files.append(f"{file.filename} (unsupported type)")
continue
if content:
await rag.ainsert(content)
inserted_count += 1
logging.info(f"Successfully indexed file: {file.filename}")
else:
failed_files.append(f"{file.filename} (no content extracted)")
except UnicodeDecodeError:
failed_files.append(f"{file.filename} (encoding error)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
logging.error(f"Error processing file {file.filename}: {str(e)}")
# Prepare status message
if inserted_count == len(files):
status = "success"
status_message = f"Successfully inserted all {inserted_count} documents"
elif inserted_count > 0:
status = "partial_success"
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
else:
status = "failure"
status_message = "No documents were successfully inserted"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status=status,
message=status_message,
document_count=inserted_count,
)
except Exception as e:
logging.error(f"Batch processing error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
# LLM configuration binding/host address (if applicable)/model (if applicable)
"llm_binding": args.llm_binding,
"llm_binding_host": args.llm_binding_host,
"llm_model": args.llm_model,
# embedding model configuration binding/host address (if applicable)/model (if applicable)
"embedding_binding": args.embedding_binding,
"embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn_config = {
"app": app,
"host": args.host,
"port": args.port,
}
if args.ssl:
uvicorn_config.update(
{
"ssl_certfile": args.ssl_certfile,
"ssl_keyfile": args.ssl_keyfile,
}
)
uvicorn.run(**uvicorn_config)
if __name__ == "__main__":
main()

View File

@@ -1,492 +0,0 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import lollms_model_complete, lollms_embed
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import os
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument(
"--model",
default="mistral-nemo:latest",
help="LLM model name (default: mistral-nemo:latest)",
)
parser.add_argument(
"--embedding-model",
default="bge-m3:latest",
help="Embedding model name (default: bge-m3:latest)",
)
parser.add_argument(
"--lollms-host",
default="http://localhost:9600",
help="lollms host URL (default: http://localhost:9600)",
)
# RAG configuration
parser.add_argument(
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=1024,
help="Embedding dimensions (default: 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
return no_auth
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
return api_key_auth
def create_app(args):
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version="1.0.0",
openapi_tags=[{"name": "api"}],
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Initialize RAG
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=lollms_model_complete,
llm_model_name=args.model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={
"host": args.lollms_host,
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
texts, embed_model=args.embedding_model, host=args.lollms_host
),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
rag.insert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
await rag.ainsert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
await rag.ainsert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(files),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"lollms_host": args.lollms_host,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()

View File

@@ -1,491 +0,0 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embed
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import os
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument(
"--model",
default="mistral-nemo:latest",
help="LLM model name (default: mistral-nemo:latest)",
)
parser.add_argument(
"--embedding-model",
default="bge-m3:latest",
help="Embedding model name (default: bge-m3:latest)",
)
parser.add_argument(
"--ollama-host",
default="http://localhost:11434",
help="Ollama host URL (default: http://localhost:11434)",
)
# RAG configuration
parser.add_argument(
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=1024,
help="Embedding dimensions (default: 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
return no_auth
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
return api_key_auth
def create_app(args):
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version="1.0.0",
openapi_tags=[{"name": "api"}],
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Initialize RAG
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=ollama_model_complete,
llm_model_name=args.model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={
"host": args.ollama_host,
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: ollama_embed(
texts, embed_model=args.embedding_model, host=args.ollama_host
),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
await rag.ainsert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
await rag.ainsert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
await rag.ainsert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(files),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"ollama_host": args.ollama_host,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()

View File

@@ -1,506 +0,0 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import asyncio
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import nest_asyncio
import os
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with OpenAI integration"
)
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument(
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
)
parser.add_argument(
"--embedding-model",
default="text-embedding-3-large",
help="OpenAI embedding model (default: text-embedding-3-large)",
)
# RAG configuration
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
return no_auth
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
return api_key_auth
async def get_embedding_dim(embedding_model: str) -> int:
"""Get embedding dimensions for the specified model"""
test_text = ["This is a test sentence."]
embedding = await openai_embedding(test_text, model=embedding_model)
return embedding.shape[1]
def create_app(args):
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version="1.0.0",
openapi_tags=[{"name": "api"}],
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Get embedding dimensions
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
async def async_openai_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
):
"""Async wrapper for OpenAI completion"""
return await openai_complete_if_cache(
args.model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
# Initialize RAG with OpenAI configuration
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=async_openai_complete,
llm_model_name=args.model,
llm_model_max_token_size=args.max_tokens,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: openai_embedding(texts, model=args.embedding_model),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
rag.insert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(files),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"embedding_dim": embedding_dim,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()

View File

@@ -7,6 +7,7 @@ nest_asyncio
numpy
ollama
openai
pipmaster
python-dotenv
python-multipart
tenacity

View File

@@ -2,7 +2,7 @@ import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
from pymongo import MongoClient
from typing import Union
from lightrag.utils import logger
from lightrag.base import BaseKVStorage
@@ -41,11 +41,35 @@ class MongoKVStorage(BaseKVStorage):
return set([s for s in data if s not in existing_ids])
async def upsert(self, data: dict[str, dict]):
for k, v in tqdm_async(data.items(), desc="Upserting"):
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
data[k]["_id"] = k
if self.namespace == "llm_response_cache":
for mode, items in data.items():
for k, v in tqdm_async(items.items(), desc="Upserting"):
key = f"{mode}_{k}"
result = self._data.update_one(
{"_id": key}, {"$setOnInsert": v}, upsert=True
)
if result.upserted_id:
logger.debug(f"\nInserted new document with key: {key}")
data[mode][k]["_id"] = key
else:
for k, v in tqdm_async(data.items(), desc="Upserting"):
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
data[k]["_id"] = k
return data
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
if "llm_response_cache" == self.namespace:
res = {}
v = self._data.find_one({"_id": mode + "_" + id})
if v:
res[id] = v
logger.debug(f"llm_response_cache find one by:{id}")
return res
else:
return None
else:
return None
async def drop(self):
""" """
pass

View File

@@ -39,6 +39,7 @@ class Neo4JStorage(BaseGraphStorage):
URI = os.environ["NEO4J_URI"]
USERNAME = os.environ["NEO4J_USERNAME"]
PASSWORD = os.environ["NEO4J_PASSWORD"]
MAX_CONNECTION_POOL_SIZE = os.environ.get("NEO4J_MAX_CONNECTION_POOL_SIZE", 800)
DATABASE = os.environ.get(
"NEO4J_DATABASE"
) # If this param is None, the home database will be used. If it is not None, the specified database will be used.
@@ -47,7 +48,11 @@ class Neo4JStorage(BaseGraphStorage):
URI, auth=(USERNAME, PASSWORD)
)
_database_name = "home database" if DATABASE is None else f"database {DATABASE}"
with GraphDatabase.driver(URI, auth=(USERNAME, PASSWORD)) as _sync_driver:
with GraphDatabase.driver(
URI,
auth=(USERNAME, PASSWORD),
max_connection_pool_size=MAX_CONNECTION_POOL_SIZE,
) as _sync_driver:
try:
with _sync_driver.session(database=DATABASE) as session:
try:

View File

@@ -130,6 +130,7 @@ class PostgreSQLDB:
data: Union[list, dict] = None,
for_age: bool = False,
graph_name: str = None,
upsert: bool = False,
):
try:
async with self.pool.acquire() as connection:
@@ -140,8 +141,16 @@ class PostgreSQLDB:
await connection.execute(sql)
else:
await connection.execute(sql, *data.values())
except (
asyncpg.exceptions.UniqueViolationError,
asyncpg.exceptions.DuplicateTableError,
) as e:
if upsert:
print("Key value duplicate, but upsert succeeded.")
else:
logger.error(f"Upsert error: {e}")
except Exception as e:
logger.error(f"PostgreSQL database error: {e}")
logger.error(f"PostgreSQL database error: {e.__class__} - {e}")
print(sql)
print(data)
raise
@@ -568,10 +577,10 @@ class PGGraphStorage(BaseGraphStorage):
if dtype == "vertex":
vertex = json.loads(v)
field = json.loads(v).get("properties")
field = vertex.get("properties")
if not field:
field = {}
field["label"] = PGGraphStorage._decode_graph_label(vertex["label"])
field["label"] = PGGraphStorage._decode_graph_label(field["node_id"])
d[k] = field
# convert edge from id-label->id by replacing id with node information
# we only do this if the vertex was also returned in the query
@@ -666,73 +675,8 @@ class PGGraphStorage(BaseGraphStorage):
# otherwise return the value stripping out some common special chars
return field.replace("(", "_").replace(")", "")
@staticmethod
def _wrap_query(query: str, graph_name: str, **params: str) -> str:
"""
Convert a cypher query to an Apache Age compatible
sql query by wrapping the cypher query in ag_catalog.cypher,
casting results to agtype and building a select statement
Args:
query (str): a valid cypher query
graph_name (str): the name of the graph to query
params (dict): parameters for the query
Returns:
str: an equivalent pgsql query
"""
# pgsql template
template = """SELECT {projection} FROM ag_catalog.cypher('{graph_name}', $$
{query}
$$) AS ({fields})"""
# if there are any returned fields they must be added to the pgsql query
if "return" in query.lower():
# parse return statement to identify returned fields
fields = (
query.lower()
.split("return")[-1]
.split("distinct")[-1]
.split("order by")[0]
.split("skip")[0]
.split("limit")[0]
.split(",")
)
# raise exception if RETURN * is found as we can't resolve the fields
if "*" in [x.strip() for x in fields]:
raise ValueError(
"AGE graph does not support 'RETURN *'"
+ " statements in Cypher queries"
)
# get pgsql formatted field names
fields = [
PGGraphStorage._get_col_name(field, idx)
for idx, field in enumerate(fields)
]
# build resulting pgsql relation
fields_str = ", ".join(
[field.split(".")[-1] + " agtype" for field in fields]
)
# if no return statement we still need to return a single field of type agtype
else:
fields_str = "a agtype"
select_str = "*"
return template.format(
graph_name=graph_name,
query=query.format(**params),
fields=fields_str,
projection=select_str,
)
async def _query(
self, query: str, readonly=True, upsert_edge=False, **params: str
self, query: str, readonly: bool = True, upsert: bool = False
) -> List[Dict[str, Any]]:
"""
Query the graph by taking a cypher query, converting it to an
@@ -746,7 +690,7 @@ class PGGraphStorage(BaseGraphStorage):
List[Dict[str, Any]]: a list of dictionaries containing the result set
"""
# convert cypher query to pgsql/age query
wrapped_query = self._wrap_query(query, self.graph_name, **params)
wrapped_query = query
# execute the query, rolling back on an error
try:
@@ -758,22 +702,16 @@ class PGGraphStorage(BaseGraphStorage):
graph_name=self.graph_name,
)
else:
# for upserting edge, need to run the SQL twice, otherwise cannot update the properties. (First time it will try to create the edge, second time is MERGING)
# It is a bug of AGE as of 2025-01-03, hope it can be resolved in the future.
if upsert_edge:
data = await self.db.execute(
f"{wrapped_query};{wrapped_query};",
for_age=True,
graph_name=self.graph_name,
)
else:
data = await self.db.execute(
wrapped_query, for_age=True, graph_name=self.graph_name
)
data = await self.db.execute(
wrapped_query,
for_age=True,
graph_name=self.graph_name,
upsert=upsert,
)
except Exception as e:
raise PGGraphQueryException(
{
"message": f"Error executing graph query: {query.format(**params)}",
"message": f"Error executing graph query: {query}",
"wrapped": wrapped_query,
"detail": str(e),
}
@@ -788,77 +726,85 @@ class PGGraphStorage(BaseGraphStorage):
return result
async def has_node(self, node_id: str) -> bool:
entity_name_label = node_id.strip('"')
entity_name_label = PGGraphStorage._encode_graph_label(node_id.strip('"'))
query = """MATCH (n:`{label}`) RETURN count(n) > 0 AS node_exists"""
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
single_result = (await self._query(query, **params))[0]
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
RETURN count(n) > 0 AS node_exists
$$) AS (node_exists bool)""" % (self.graph_name, entity_name_label)
single_result = (await self._query(query))[0]
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query.format(**params),
query,
single_result["node_exists"],
)
return single_result["node_exists"]
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
entity_name_label_source = source_node_id.strip('"')
entity_name_label_target = target_node_id.strip('"')
src_label = PGGraphStorage._encode_graph_label(source_node_id.strip('"'))
tgt_label = PGGraphStorage._encode_graph_label(target_node_id.strip('"'))
query = """MATCH (a:`{src_label}`)-[r]-(b:`{tgt_label}`)
RETURN COUNT(r) > 0 AS edge_exists"""
params = {
"src_label": PGGraphStorage._encode_graph_label(entity_name_label_source),
"tgt_label": PGGraphStorage._encode_graph_label(entity_name_label_target),
}
single_result = (await self._query(query, **params))[0]
query = """SELECT * FROM cypher('%s', $$
MATCH (a:Entity {node_id: "%s"})-[r]-(b:Entity {node_id: "%s"})
RETURN COUNT(r) > 0 AS edge_exists
$$) AS (edge_exists bool)""" % (
self.graph_name,
src_label,
tgt_label,
)
single_result = (await self._query(query))[0]
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query.format(**params),
query,
single_result["edge_exists"],
)
return single_result["edge_exists"]
async def get_node(self, node_id: str) -> Union[dict, None]:
entity_name_label = node_id.strip('"')
query = """MATCH (n:`{label}`) RETURN n"""
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
record = await self._query(query, **params)
label = PGGraphStorage._encode_graph_label(node_id.strip('"'))
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
RETURN n
$$) AS (n agtype)""" % (self.graph_name, label)
record = await self._query(query)
if record:
node = record[0]
node_dict = node["n"]
logger.debug(
"{%s}: query: {%s}, result: {%s}",
inspect.currentframe().f_code.co_name,
query.format(**params),
query,
node_dict,
)
return node_dict
return None
async def node_degree(self, node_id: str) -> int:
entity_name_label = node_id.strip('"')
label = PGGraphStorage._encode_graph_label(node_id.strip('"'))
query = """MATCH (n:`{label}`)-[]->(x) RETURN count(x) AS total_edge_count"""
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
record = (await self._query(query, **params))[0]
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})-[]->(x)
RETURN count(x) AS total_edge_count
$$) AS (total_edge_count integer)""" % (self.graph_name, label)
record = (await self._query(query))[0]
if record:
edge_count = int(record["total_edge_count"])
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query.format(**params),
query,
edge_count,
)
return edge_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
entity_name_label_source = src_id.strip('"')
entity_name_label_target = tgt_id.strip('"')
src_degree = await self.node_degree(entity_name_label_source)
trg_degree = await self.node_degree(entity_name_label_target)
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
@@ -885,23 +831,25 @@ class PGGraphStorage(BaseGraphStorage):
Returns:
list: List of all relationships/edges found
"""
entity_name_label_source = source_node_id.strip('"')
entity_name_label_target = target_node_id.strip('"')
src_label = PGGraphStorage._encode_graph_label(source_node_id.strip('"'))
tgt_label = PGGraphStorage._encode_graph_label(target_node_id.strip('"'))
query = """MATCH (a:`{src_label}`)-[r]->(b:`{tgt_label}`)
RETURN properties(r) as edge_properties
LIMIT 1"""
params = {
"src_label": PGGraphStorage._encode_graph_label(entity_name_label_source),
"tgt_label": PGGraphStorage._encode_graph_label(entity_name_label_target),
}
record = await self._query(query, **params)
query = """SELECT * FROM cypher('%s', $$
MATCH (a:Entity {node_id: "%s"})-[r]->(b:Entity {node_id: "%s"})
RETURN properties(r) as edge_properties
LIMIT 1
$$) AS (edge_properties agtype)""" % (
self.graph_name,
src_label,
tgt_label,
)
record = await self._query(query)
if record and record[0] and record[0]["edge_properties"]:
result = record[0]["edge_properties"]
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query.format(**params),
query,
result,
)
return result
@@ -911,29 +859,41 @@ class PGGraphStorage(BaseGraphStorage):
Retrieves all edges (relationships) for a particular node identified by its label.
:return: List of dictionaries containing edge information
"""
node_label = source_node_id.strip('"')
label = PGGraphStorage._encode_graph_label(source_node_id.strip('"'))
query = """MATCH (n:`{label}`)
OPTIONAL MATCH (n)-[r]-(connected)
RETURN n, r, connected"""
params = {"label": PGGraphStorage._encode_graph_label(node_label)}
results = await self._query(query, **params)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
OPTIONAL MATCH (n)-[r]-(connected)
RETURN n, r, connected
$$) AS (n agtype, r agtype, connected agtype)""" % (
self.graph_name,
label,
)
results = await self._query(query)
edges = []
for record in results:
source_node = record["n"] if record["n"] else None
connected_node = record["connected"] if record["connected"] else None
source_label = (
source_node["label"] if source_node and source_node["label"] else None
source_node["node_id"]
if source_node and source_node["node_id"]
else None
)
target_label = (
connected_node["label"]
if connected_node and connected_node["label"]
connected_node["node_id"]
if connected_node and connected_node["node_id"]
else None
)
if source_label and target_label:
edges.append((source_label, target_label))
edges.append(
(
PGGraphStorage._decode_graph_label(source_label),
PGGraphStorage._decode_graph_label(target_label),
)
)
return edges
@@ -950,17 +910,21 @@ class PGGraphStorage(BaseGraphStorage):
node_id: The unique identifier for the node (used as label)
node_data: Dictionary of node properties
"""
label = node_id.strip('"')
label = PGGraphStorage._encode_graph_label(node_id.strip('"'))
properties = node_data
query = """MERGE (n:`{label}`)
SET n += {properties}"""
params = {
"label": PGGraphStorage._encode_graph_label(label),
"properties": PGGraphStorage._format_properties(properties),
}
query = """SELECT * FROM cypher('%s', $$
MERGE (n:Entity {node_id: "%s"})
SET n += %s
RETURN n
$$) AS (n agtype)""" % (
self.graph_name,
label,
PGGraphStorage._format_properties(properties),
)
try:
await self._query(query, readonly=False, **params)
await self._query(query, readonly=False, upsert=True)
logger.debug(
"Upserted node with label '{%s}' and properties: {%s}",
label,
@@ -986,28 +950,30 @@ class PGGraphStorage(BaseGraphStorage):
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): Dictionary of properties to set on the edge
"""
source_node_label = source_node_id.strip('"')
target_node_label = target_node_id.strip('"')
src_label = PGGraphStorage._encode_graph_label(source_node_id.strip('"'))
tgt_label = PGGraphStorage._encode_graph_label(target_node_id.strip('"'))
edge_properties = edge_data
query = """MATCH (source:`{src_label}`)
WITH source
MATCH (target:`{tgt_label}`)
MERGE (source)-[r:DIRECTED]->(target)
SET r += {properties}
RETURN r"""
params = {
"src_label": PGGraphStorage._encode_graph_label(source_node_label),
"tgt_label": PGGraphStorage._encode_graph_label(target_node_label),
"properties": PGGraphStorage._format_properties(edge_properties),
}
query = """SELECT * FROM cypher('%s', $$
MATCH (source:Entity {node_id: "%s"})
WITH source
MATCH (target:Entity {node_id: "%s"})
MERGE (source)-[r:DIRECTED]->(target)
SET r += %s
RETURN r
$$) AS (r agtype)""" % (
self.graph_name,
src_label,
tgt_label,
PGGraphStorage._format_properties(edge_properties),
)
# logger.info(f"-- inserting edge after formatted: {params}")
try:
await self._query(query, readonly=False, upsert_edge=True, **params)
await self._query(query, readonly=False, upsert=True)
logger.debug(
"Upserted edge from '{%s}' to '{%s}' with properties: {%s}",
source_node_label,
target_node_label,
src_label,
tgt_label,
edge_properties,
)
except Exception as e:

View File

@@ -61,7 +61,7 @@ db = PostgreSQLDB(
"port": 15432,
"user": "rag",
"password": "rag",
"database": "rag",
"database": "r1",
}
)
@@ -74,8 +74,12 @@ async def query_with_age():
embedding_func=None,
)
graph.db = db
res = await graph.get_node('"CHRISTMAS-TIME"')
res = await graph.get_node('"A CHRISTMAS CAROL"')
print("Node is: ", res)
res = await graph.get_edge('"A CHRISTMAS CAROL"', "PROJECT GUTENBERG")
print("Edge is: ", res)
res = await graph.get_node_edges('"SCROOGE"')
print("Node Edges are: ", res)
async def create_edge_with_age():

View File

@@ -45,6 +45,7 @@ from .storage import (
from .prompt import GRAPH_FIELD_SEP
# future KG integrations
# from .kg.ArangoDB_impl import (
@@ -168,7 +169,7 @@ class LightRAG:
# LLM
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16
llm_model_kwargs: dict = field(default_factory=dict)
@@ -187,6 +188,10 @@ class LightRAG:
# Add new field for document status storage type
doc_status_storage: str = field(default="JsonDocStatusStorage")
# Custom Chunking Function
chunking_func: callable = chunking_by_token_size
chunking_func_kwargs: dict = field(default_factory=dict)
def __post_init__(self):
log_file = os.path.join("lightrag.log")
set_logger(log_file)
@@ -315,15 +320,25 @@ class LightRAG:
"JsonDocStatusStorage": JsonDocStatusStorage,
}
def insert(self, string_or_strings):
def insert(
self, string_or_strings, split_by_character=None, split_by_character_only=False
):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.ainsert(string_or_strings))
return loop.run_until_complete(
self.ainsert(string_or_strings, split_by_character, split_by_character_only)
)
async def ainsert(self, string_or_strings):
async def ainsert(
self, string_or_strings, split_by_character=None, split_by_character_only=False
):
"""Insert documents with checkpoint support
Args:
string_or_strings: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
chunk_size, split the sub chunk by token size.
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
"""
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
@@ -360,7 +375,7 @@ class LightRAG:
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
for doc_id, doc in tqdm_async(
batch_docs.items(), desc=f"Processing batch {i//batch_size + 1}"
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
):
try:
# Update status to processing
@@ -379,11 +394,14 @@ class LightRAG:
**dp,
"full_doc_id": doc_id,
}
for dp in chunking_by_token_size(
for dp in self.chunking_func(
doc["content"],
split_by_character=split_by_character,
split_by_character_only=split_by_character_only,
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
**self.chunking_func_kwargs,
)
}
@@ -455,6 +473,73 @@ class LightRAG:
# Ensure all indexes are updated after each document
await self._insert_done()
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.ainsert_custom_chunks(full_text, text_chunks)
)
async def ainsert_custom_chunks(self, full_text: str, text_chunks: list[str]):
update_storage = False
try:
doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
new_docs = {doc_key: {"content": full_text.strip()}}
_add_doc_keys = await self.full_docs.filter_keys([doc_key])
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("This document is already in the storage.")
return
update_storage = True
logger.info(f"[New Docs] inserting {len(new_docs)} docs")
inserting_chunks = {}
for chunk_text in text_chunks:
chunk_text_stripped = chunk_text.strip()
chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
inserting_chunks[chunk_key] = {
"content": chunk_text_stripped,
"full_doc_id": doc_key,
}
_add_chunk_keys = await self.text_chunks.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage.")
return
logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")
await self.chunks_vdb.upsert(inserting_chunks)
logger.info("[Entity Extraction]...")
maybe_new_kg = await extract_entities(
inserting_chunks,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
global_config=asdict(self),
)
if maybe_new_kg is None:
logger.warning("No new entities and relationships found")
return
else:
self.chunk_entity_relation_graph = maybe_new_kg
await self.full_docs.upsert(new_docs)
await self.text_chunks.upsert(inserting_chunks)
finally:
if update_storage:
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_inst in [

View File

@@ -406,8 +406,9 @@ async def lollms_model_if_cache(
full_prompt += prompt
request_data["prompt"] = full_prompt
timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None))
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=timeout) as session:
if stream:
async def inner():

View File

@@ -4,7 +4,6 @@ import re
from tqdm.asyncio import tqdm as tqdm_async
from typing import Union
from collections import Counter, defaultdict
import warnings
from .utils import (
logger,
clean_str,
@@ -34,23 +33,61 @@ import time
def chunking_by_token_size(
content: str, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o"
content: str,
split_by_character=None,
split_by_character_only=False,
overlap_token_size=128,
max_token_size=1024,
tiktoken_model="gpt-4o",
**kwargs,
):
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
results = []
for index, start in enumerate(
range(0, len(tokens), max_token_size - overlap_token_size)
):
chunk_content = decode_tokens_by_tiktoken(
tokens[start : start + max_token_size], model_name=tiktoken_model
)
results.append(
{
"tokens": min(max_token_size, len(tokens) - start),
"content": chunk_content.strip(),
"chunk_order_index": index,
}
)
if split_by_character:
raw_chunks = content.split(split_by_character)
new_chunks = []
if split_by_character_only:
for chunk in raw_chunks:
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
new_chunks.append((len(_tokens), chunk))
else:
for chunk in raw_chunks:
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
if len(_tokens) > max_token_size:
for start in range(
0, len(_tokens), max_token_size - overlap_token_size
):
chunk_content = decode_tokens_by_tiktoken(
_tokens[start : start + max_token_size],
model_name=tiktoken_model,
)
new_chunks.append(
(min(max_token_size, len(_tokens) - start), chunk_content)
)
else:
new_chunks.append((len(_tokens), chunk))
for index, (_len, chunk) in enumerate(new_chunks):
results.append(
{
"tokens": _len,
"content": chunk.strip(),
"chunk_order_index": index,
}
)
else:
for index, start in enumerate(
range(0, len(tokens), max_token_size - overlap_token_size)
):
chunk_content = decode_tokens_by_tiktoken(
tokens[start : start + max_token_size], model_name=tiktoken_model
)
results.append(
{
"tokens": min(max_token_size, len(tokens) - start),
"content": chunk_content.strip(),
"chunk_order_index": index,
}
)
return results
@@ -582,15 +619,22 @@ async def kg_query(
logger.warning("low_level_keywords and high_level_keywords is empty")
return PROMPTS["fail_response"]
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
logger.warning("low_level_keywords is empty")
return PROMPTS["fail_response"]
else:
ll_keywords = ", ".join(ll_keywords)
logger.warning(
"low_level_keywords is empty, switching from %s mode to global mode",
query_param.mode,
)
query_param.mode = "global"
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
logger.warning("high_level_keywords is empty")
return PROMPTS["fail_response"]
else:
hl_keywords = ", ".join(hl_keywords)
logger.warning(
"high_level_keywords is empty, switching from %s mode to local mode",
query_param.mode,
)
query_param.mode = "local"
ll_keywords = ", ".join(ll_keywords) if ll_keywords else ""
hl_keywords = ", ".join(hl_keywords) if hl_keywords else ""
logger.info("Using %s mode for query processing", query_param.mode)
# Build context
keywords = [ll_keywords, hl_keywords]
@@ -656,78 +700,52 @@ async def _build_query_context(
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
ll_kewwords, hl_keywrds = query[0], query[1]
if query_param.mode in ["local", "hybrid"]:
if ll_kewwords == "":
ll_entities_context, ll_relations_context, ll_text_units_context = (
"",
"",
"",
)
warnings.warn(
"Low Level context is None. Return empty Low entity/relationship/source"
)
query_param.mode = "global"
else:
(
ll_entities_context,
ll_relations_context,
ll_text_units_context,
) = await _get_node_data(
ll_kewwords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
if query_param.mode in ["global", "hybrid"]:
if hl_keywrds == "":
hl_entities_context, hl_relations_context, hl_text_units_context = (
"",
"",
"",
)
warnings.warn(
"High Level context is None. Return empty High entity/relationship/source"
)
query_param.mode = "local"
else:
(
hl_entities_context,
hl_relations_context,
hl_text_units_context,
) = await _get_edge_data(
hl_keywrds,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
if (
hl_entities_context == ""
and hl_relations_context == ""
and hl_text_units_context == ""
):
logger.warn("No high level context found. Switching to local mode.")
query_param.mode = "local"
if query_param.mode == "hybrid":
ll_keywords, hl_keywords = query[0], query[1]
if query_param.mode == "local":
entities_context, relations_context, text_units_context = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
elif query_param.mode == "global":
entities_context, relations_context, text_units_context = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
else: # hybrid mode
(
ll_entities_context,
ll_relations_context,
ll_text_units_context,
) = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
(
hl_entities_context,
hl_relations_context,
hl_text_units_context,
) = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
entities_context, relations_context, text_units_context = combine_contexts(
[hl_entities_context, ll_entities_context],
[hl_relations_context, ll_relations_context],
[hl_text_units_context, ll_text_units_context],
)
elif query_param.mode == "local":
entities_context, relations_context, text_units_context = (
ll_entities_context,
ll_relations_context,
ll_text_units_context,
)
elif query_param.mode == "global":
entities_context, relations_context, text_units_context = (
hl_entities_context,
hl_relations_context,
hl_text_units_context,
)
return f"""
-----Entities-----
```csv

View File

@@ -1,38 +1,38 @@
accelerate
aioboto3~=13.3.0
aiofiles~=24.1.0
aiohttp~=3.11.11
asyncpg~=0.30.0
aioboto3
aiofiles
aiohttp
asyncpg
# database packages
graspologic
gremlinpython
hnswlib
nano-vectordb
neo4j~=5.27.0
networkx~=3.2.1
neo4j
networkx
numpy~=2.2.0
ollama~=0.4.4
openai~=1.58.1
numpy
ollama
openai
oracledb
psycopg-pool~=3.2.4
psycopg[binary,pool]~=3.2.3
pydantic~=2.10.4
psycopg-pool
psycopg[binary,pool]
pydantic
pymilvus
pymongo
pymysql
python-dotenv~=1.0.1
pyvis~=0.3.2
setuptools~=70.0.0
python-dotenv
pyvis
setuptools
# lmdeploy[all]
sqlalchemy~=2.0.36
tenacity~=9.0.0
sqlalchemy
tenacity
# LLM packages
tiktoken~=0.8.0
torch~=2.5.1+cu121
tqdm~=4.67.1
transformers~=4.47.1
tiktoken
torch
tqdm
transformers
xxhash

View File

@@ -100,10 +100,7 @@ setuptools.setup(
},
entry_points={
"console_scripts": [
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
"azure-openai-lightrag-server=lightrag.api.azure_openai_lightrag_server:main [api]",
"lightrag-server=lightrag.api.lightrag_server:main [api]",
],
},
)