improved get status
This commit is contained in:
@@ -13,7 +13,6 @@ from .operate import (
|
||||
kg_query_with_keywords,
|
||||
mix_kg_vector_query,
|
||||
naive_query,
|
||||
# local_query,global_query,hybrid_query,,
|
||||
)
|
||||
|
||||
from .utils import (
|
||||
@@ -28,6 +27,7 @@ from .base import (
|
||||
BaseGraphStorage,
|
||||
BaseKVStorage,
|
||||
BaseVectorStorage,
|
||||
DocProcessingStatus,
|
||||
DocStatus,
|
||||
DocStatusStorage,
|
||||
QueryParam,
|
||||
@@ -396,7 +396,9 @@ class LightRAG:
|
||||
split_by_character is None, this parameter is ignored.
|
||||
"""
|
||||
await self.apipeline_enqueue_documents(string_or_strings)
|
||||
await self.apipeline_process_enqueue_documents(split_by_character, split_by_character_only)
|
||||
await self.apipeline_process_enqueue_documents(
|
||||
split_by_character, split_by_character_only
|
||||
)
|
||||
|
||||
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
||||
loop = always_get_an_event_loop()
|
||||
@@ -468,12 +470,12 @@ class LightRAG:
|
||||
async def apipeline_enqueue_documents(self, string_or_strings: str | list[str]):
|
||||
"""
|
||||
Pipeline for Processing Documents
|
||||
|
||||
|
||||
1. Remove duplicate contents from the list
|
||||
2. Generate document IDs and initial status
|
||||
3. Filter out already processed documents
|
||||
4. Enqueue document in status
|
||||
"""
|
||||
4. Enqueue document in status
|
||||
"""
|
||||
if isinstance(string_or_strings, str):
|
||||
string_or_strings = [string_or_strings]
|
||||
|
||||
@@ -512,26 +514,6 @@ class LightRAG:
|
||||
await self.doc_status.upsert(new_docs)
|
||||
logger.info(f"Stored {len(new_docs)} new unique documents")
|
||||
|
||||
async def _get_pending_documents(self) -> list[str]:
|
||||
"""Fetch all pending and failed documents."""
|
||||
to_process_doc_keys: list[str] = []
|
||||
|
||||
# Fetch failed documents
|
||||
failed_docs = await self.doc_status.get_failed_docs()
|
||||
if failed_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in failed_docs])
|
||||
|
||||
# Fetch pending documents
|
||||
pending_docs = await self.doc_status.get_pending_docs()
|
||||
if pending_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in pending_docs])
|
||||
|
||||
if not to_process_doc_keys:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
return []
|
||||
|
||||
return to_process_doc_keys
|
||||
|
||||
async def apipeline_process_enqueue_documents(
|
||||
self,
|
||||
split_by_character: str | None = None,
|
||||
@@ -548,46 +530,53 @@ class LightRAG:
|
||||
4. Update the document status
|
||||
"""
|
||||
# 1. get all pending and failed documents
|
||||
pending_doc_ids = await self._get_pending_documents()
|
||||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||||
|
||||
if not pending_doc_ids:
|
||||
# Fetch failed documents
|
||||
failed_docs = await self.doc_status.get_failed_docs()
|
||||
to_process_docs.update(failed_docs)
|
||||
|
||||
pending_docs = await self.doc_status.get_pending_docs()
|
||||
to_process_docs.update(pending_docs)
|
||||
|
||||
if not to_process_docs:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
return
|
||||
return
|
||||
|
||||
to_process_docs_ids = list(to_process_docs.keys())
|
||||
# Get allready processed documents (text chunks and full docs)
|
||||
text_chunks_processed_doc_ids = await self.text_chunks.filter_keys(
|
||||
pending_doc_ids
|
||||
)
|
||||
full_docs_processed_doc_ids = await self.full_docs.filter_keys(pending_doc_ids)
|
||||
text_chunks_processed_doc_ids = await self.text_chunks.filter_keys(to_process_docs_ids)
|
||||
full_docs_processed_doc_ids = await self.full_docs.filter_keys(to_process_docs_ids)
|
||||
|
||||
# 2. split docs into chunks, insert chunks, update doc status
|
||||
batch_size = self.addon_params.get("insert_batch_size", 10)
|
||||
batch_docs_list = [
|
||||
pending_doc_ids[i : i + batch_size]
|
||||
for i in range(0, len(pending_doc_ids), batch_size)
|
||||
list(to_process_docs.items())[i : i + batch_size]
|
||||
for i in range(0, len(to_process_docs), batch_size)
|
||||
]
|
||||
|
||||
# 3. iterate over batches
|
||||
tasks: dict[str, list[Coroutine[Any, Any, None]]] = {}
|
||||
for batch_idx, doc_ids in tqdm_async(
|
||||
for batch_idx, ids_doc_processing_status in tqdm_async(
|
||||
enumerate(batch_docs_list),
|
||||
desc="Process Batches",
|
||||
):
|
||||
# 4. iterate over batch
|
||||
for doc_id in tqdm_async(
|
||||
doc_ids,
|
||||
for id_doc_processing_status in tqdm_async(
|
||||
ids_doc_processing_status,
|
||||
desc=f"Process Batch {batch_idx}",
|
||||
):
|
||||
# Update status in processing
|
||||
status_doc = await self.doc_status.get_by_id(doc_id)
|
||||
id_doc, status_doc = id_doc_processing_status
|
||||
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
id_doc: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content_summary": status_doc["content_summary"],
|
||||
"content_length": status_doc["content_length"],
|
||||
"created_at": status_doc["created_at"],
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -595,10 +584,10 @@ class LightRAG:
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
"full_doc_id": id_doc_processing_status,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc["content"],
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
@@ -611,25 +600,26 @@ class LightRAG:
|
||||
await self._process_entity_relation_graph(chunks)
|
||||
await self.chunks_vdb.upsert(chunks)
|
||||
|
||||
tasks[id_doc] = []
|
||||
# Check if document already processed the doc
|
||||
if doc_id not in full_docs_processed_doc_ids:
|
||||
tasks[doc_id].append(
|
||||
if id_doc not in full_docs_processed_doc_ids:
|
||||
tasks[id_doc].append(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc["content"]}}
|
||||
{id_doc: {"content": status_doc.content}}
|
||||
)
|
||||
)
|
||||
|
||||
# Check if chunks already processed the doc
|
||||
if doc_id not in text_chunks_processed_doc_ids:
|
||||
tasks[doc_id].append(self.text_chunks.upsert(chunks))
|
||||
if id_doc not in text_chunks_processed_doc_ids:
|
||||
tasks[id_doc].append(self.text_chunks.upsert(chunks))
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
for doc_id, task in tasks.items():
|
||||
for id_doc_processing_status, task in tasks.items():
|
||||
try:
|
||||
await asyncio.gather(*task)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
id_doc_processing_status: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
@@ -639,10 +629,10 @@ class LightRAG:
|
||||
await self._insert_done()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
logger.error(f"Failed to process document {id_doc_processing_status}: {str(e)}")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
id_doc_processing_status: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
|
Reference in New Issue
Block a user