Added support for Amazon Bedrock models

This commit is contained in:
João Galego
2024-10-18 14:17:14 +01:00
parent f49de420cf
commit 1fc55b18d5
4 changed files with 181 additions and 0 deletions

4
.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
__pycache__
*.egg-info
dickens/
book.txt

View File

@@ -0,0 +1,48 @@
"""
LightRAG meets Amazon Bedrock ⛰️
"""
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import bedrock_complete, bedrock_embedding
from lightrag.utils import EmbeddingFunc
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=bedrock_complete,
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
node2vec_params = {
'dimensions': 1024,
'num_walks': 10,
'walk_length': 40,
'window_size': 2,
'iterations': 3,
'random_seed': 3
},
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: bedrock_embedding(texts)
)
)
with open("./book.txt") as f:
rag.insert(f.read())
# Naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))

View File

@@ -1,4 +1,6 @@
import os
import json
import aioboto3
import numpy as np
import ollama
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
@@ -48,6 +50,54 @@ async def openai_complete_if_cache(
)
return response.choices[0].message.content
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def bedrock_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[], base_url=None,
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
) -> str:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
messages.extend(history_messages)
messages.append({'role': "user", 'content': [{'text': prompt}]})
args = {
'modelId': model,
'messages': messages
}
if system_prompt:
args['system'] = [{'text': system_prompt}]
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
response = await bedrock_async_client.converse(**args, **kwargs)
if hashing_kv is not None:
await hashing_kv.upsert({
args_hash: {
'return': response['output']['message']['content'][0]['text'],
'model': model
}
})
return response['output']['message']['content'][0]['text']
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -145,6 +195,19 @@ async def gpt_4o_mini_complete(
**kwargs,
)
async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await bedrock_complete_if_cache(
"anthropic.claude-3-sonnet-20240229-v1:0",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def hf_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -186,6 +249,71 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
return np.array([dp.embedding for dp in response.data])
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
# )
async def bedrock_embedding(
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
if (model_provider := model.split(".")[0]) == "amazon":
embed_texts = []
for text in texts:
if "v2" in model:
body = json.dumps({
'inputText': text,
# 'dimensions': embedding_dim,
'embeddingTypes': ["float"]
})
elif "v1" in model:
body = json.dumps({
'inputText': text
})
else:
raise ValueError(f"Model {model} is not supported!")
response = await bedrock_async_client.invoke_model(
modelId=model,
body=body,
accept="application/json",
contentType="application/json"
)
response_body = await response.get('body').json()
embed_texts.append(response_body['embedding'])
elif model_provider == "cohere":
body = json.dumps({
'texts': texts,
'input_type': "search_document",
'truncate': "NONE"
})
response = await bedrock_async_client.invoke_model(
model=model,
body=body,
accept="application/json",
contentType="application/json"
)
response_body = json.loads(response.get('body').read())
embed_texts = response_body['embeddings']
else:
raise ValueError(f"Model provider '{model_provider}' is not supported!")
return np.array(embed_texts)
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
with torch.no_grad():

View File

@@ -1,3 +1,4 @@
aioboto3
openai
tiktoken
networkx