Add ability to passadditional parameters to ollama library like host and timeout

This commit is contained in:
Andrii Lazarchuk
2024-10-21 11:53:06 +00:00
parent 57e9604ce6
commit 216813c300
4 changed files with 13 additions and 5 deletions

3
.gitignore vendored
View File

@@ -4,4 +4,5 @@ dickens/
book.txt
lightrag-dev/
.idea/
dist/
dist/
.venv/

View File

@@ -1,4 +1,7 @@
import os
import logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding

View File

@@ -88,6 +88,7 @@ class LightRAG:
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16
llm_model_kwargs: dict = field(default_factory=dict)
# storage
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
@@ -154,7 +155,7 @@ class LightRAG:
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(self.llm_model_func, hashing_kv=self.llm_response_cache)
partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
)
def insert(self, string_or_strings):

View File

@@ -222,8 +222,10 @@ async def ollama_model_if_cache(
) -> str:
kwargs.pop("max_tokens", None)
kwargs.pop("response_format", None)
host = kwargs.pop("host", None)
timeout = kwargs.pop("timeout", None)
ollama_client = ollama.AsyncClient()
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
@@ -415,10 +417,11 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
return embeddings.detach().numpy()
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
embed_text = []
ollama_client = ollama.Client(**kwargs)
for text in texts:
data = ollama.embeddings(model=embed_model, prompt=text)
data = ollama_client.embeddings(model=embed_model, prompt=text)
embed_text.append(data["embedding"])
return embed_text