Merge branch 'main' of https://github.com/JavieHush/LightRAG
This commit is contained in:
78
README.md
78
README.md
@@ -7,7 +7,6 @@
|
||||
<p>
|
||||
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
||||
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
|
||||
<img src="https://badges.pufler.dev/visits/hkuds/lightrag?style=flat-square&logo=github">
|
||||
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
|
||||
</p>
|
||||
<p>
|
||||
@@ -21,7 +20,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
||||
</div>
|
||||
|
||||
## 🎉 News
|
||||
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
|
||||
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-ollama-models)!
|
||||
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-hugging-face-models)!
|
||||
|
||||
## Install
|
||||
|
||||
@@ -37,7 +37,7 @@ pip install lightrag-hku
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
* All the code can be found in the `examples`.
|
||||
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
|
||||
* Download the demo text "A Christmas Carol by Charles Dickens":
|
||||
```bash
|
||||
@@ -75,6 +75,42 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
```
|
||||
|
||||
### Open AI-like APIs
|
||||
LightRAG also support Open AI-like chat/embeddings APIs:
|
||||
```python
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"solar-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
### Using Hugging Face Models
|
||||
If you want to use Hugging Face models, you only need to set LightRAG as follows:
|
||||
```python
|
||||
@@ -84,7 +120,7 @@ from transformers import AutoModel, AutoTokenizer
|
||||
# Initialize LightRAG with Hugging Face model
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=hf_model_complete, # Use Hugging Face complete model for text generation
|
||||
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
|
||||
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
|
||||
# Use Hugging Face embedding function
|
||||
embedding_func=EmbeddingFunc(
|
||||
@@ -98,11 +134,35 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
```
|
||||
|
||||
### Using Ollama Models
|
||||
If you want to use Ollama models, you only need to set LightRAG as follows:
|
||||
```python
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
|
||||
# Initialize LightRAG with Ollama model
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
|
||||
llm_model_name='your_model_name', # Your model name
|
||||
# Use Ollama embedding function
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
)
|
||||
```
|
||||
|
||||
### Batch Insert
|
||||
```python
|
||||
# Batch Insert: Insert multiple texts at once
|
||||
rag.insert(["TEXT1", "TEXT2",...])
|
||||
```
|
||||
|
||||
### Incremental Insert
|
||||
|
||||
```python
|
||||
@@ -186,6 +246,7 @@ Output your evaluation in the following JSON format:
|
||||
}}
|
||||
}}
|
||||
```
|
||||
|
||||
### Overall Performance Table
|
||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||
@@ -212,6 +273,7 @@ Output your evaluation in the following JSON format:
|
||||
|
||||
## Reproduce
|
||||
All the code can be found in the `./reproduce` directory.
|
||||
|
||||
### Step-0 Extract Unique Contexts
|
||||
First, we need to extract unique contexts in the datasets.
|
||||
```python
|
||||
@@ -265,6 +327,7 @@ def extract_unique_contexts(input_directory, output_directory):
|
||||
print("All files have been processed.")
|
||||
|
||||
```
|
||||
|
||||
### Step-1 Insert Contexts
|
||||
For the extracted contexts, we insert them into the LightRAG system.
|
||||
|
||||
@@ -286,6 +349,7 @@ def insert_text(rag, file_path):
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
```
|
||||
|
||||
### Step-2 Generate Queries
|
||||
|
||||
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
|
||||
@@ -326,8 +390,10 @@ def extract_queries(file_path):
|
||||
├── examples
|
||||
│ ├── batch_eval.py
|
||||
│ ├── generate_query.py
|
||||
│ ├── lightrag_openai_demo.py
|
||||
│ └── lightrag_hf_demo.py
|
||||
│ ├── lightrag_hf_demo.py
|
||||
│ ├── lightrag_ollama_demo.py
|
||||
│ ├── lightrag_openai_compatible_demo.py
|
||||
│ └── lightrag_openai_demo.py
|
||||
├── lightrag
|
||||
│ ├── __init__.py
|
||||
│ ├── base.py
|
||||
|
40
examples/lightrag_ollama_demo.py
Normal file
40
examples/lightrag_ollama_demo.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name='your_model_name',
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG, QueryParam
|
||||
|
||||
__version__ = "0.0.5"
|
||||
__version__ = "0.0.6"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -6,7 +6,7 @@ from functools import partial
|
||||
from typing import Type, cast, Any
|
||||
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding,hf_model_complete,hf_embedding
|
||||
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding, hf_model_complete, hf_embedding
|
||||
from .operate import (
|
||||
chunking_by_token_size,
|
||||
extract_entities,
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import ollama
|
||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||
from tenacity import (
|
||||
retry,
|
||||
@@ -92,6 +93,34 @@ async def hf_model_if_cache(
|
||||
)
|
||||
return response_text
|
||||
|
||||
async def ollama_model_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
kwargs.pop("max_tokens", None)
|
||||
kwargs.pop("response_format", None)
|
||||
|
||||
ollama_client = ollama.AsyncClient()
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash(model, messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
|
||||
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||
|
||||
result = response["message"]["content"]
|
||||
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
||||
|
||||
return result
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
@@ -116,8 +145,6 @@ async def gpt_4o_mini_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
async def hf_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -130,6 +157,18 @@ async def hf_model_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def ollama_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
||||
return await ollama_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
@@ -154,6 +193,13 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||
return embeddings.detach().numpy()
|
||||
|
||||
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
embed_text = []
|
||||
for text in texts:
|
||||
data = ollama.embeddings(model=embed_model, prompt=text)
|
||||
embed_text.append(data["embedding"])
|
||||
|
||||
return embed_text
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
@@ -6,3 +6,7 @@ nano-vectordb
|
||||
hnswlib
|
||||
xxhash
|
||||
tenacity
|
||||
transformers
|
||||
torch
|
||||
ollama
|
||||
accelerate
|
Reference in New Issue
Block a user