Add ability to passadditional parameters to ollama library like host and timeout
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -4,4 +4,5 @@ dickens/
|
||||
book.txt
|
||||
lightrag-dev/
|
||||
.idea/
|
||||
dist/
|
||||
dist/
|
||||
.venv/
|
@@ -1,4 +1,7 @@
|
||||
import os
|
||||
import logging
|
||||
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
|
@@ -88,6 +88,7 @@ class LightRAG:
|
||||
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
||||
llm_model_max_token_size: int = 32768
|
||||
llm_model_max_async: int = 16
|
||||
llm_model_kwargs: dict = field(default_factory=dict)
|
||||
|
||||
# storage
|
||||
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
||||
@@ -154,7 +155,7 @@ class LightRAG:
|
||||
)
|
||||
|
||||
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
||||
partial(self.llm_model_func, hashing_kv=self.llm_response_cache)
|
||||
partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
|
||||
)
|
||||
|
||||
def insert(self, string_or_strings):
|
||||
|
@@ -222,8 +222,10 @@ async def ollama_model_if_cache(
|
||||
) -> str:
|
||||
kwargs.pop("max_tokens", None)
|
||||
kwargs.pop("response_format", None)
|
||||
host = kwargs.pop("host", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
ollama_client = ollama.AsyncClient()
|
||||
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
@@ -415,10 +417,11 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||
return embeddings.detach().numpy()
|
||||
|
||||
|
||||
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
embed_text = []
|
||||
ollama_client = ollama.Client(**kwargs)
|
||||
for text in texts:
|
||||
data = ollama.embeddings(model=embed_model, prompt=text)
|
||||
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
||||
embed_text.append(data["embedding"])
|
||||
|
||||
return embed_text
|
||||
|
Reference in New Issue
Block a user