Merge branch 'main' into Add-summary-lang-support

This commit is contained in:
yangdx
2025-03-04 14:02:21 +08:00
16 changed files with 194 additions and 91 deletions

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
recursive-include lightrag/api/webui *

View File

@@ -505,44 +505,58 @@ rag.query_with_separate_keyword_extraction(
```python
custom_kg = {
"chunks": [
{
"content": "Alice and Bob are collaborating on quantum computing research.",
"source_id": "doc-1"
}
],
"entities": [
{
"entity_name": "CompanyA",
"entity_type": "Organization",
"description": "A major technology company",
"source_id": "Source1"
"entity_name": "Alice",
"entity_type": "person",
"description": "Alice is a researcher specializing in quantum physics.",
"source_id": "doc-1"
},
{
"entity_name": "ProductX",
"entity_type": "Product",
"description": "A popular product developed by CompanyA",
"source_id": "Source1"
"entity_name": "Bob",
"entity_type": "person",
"description": "Bob is a mathematician.",
"source_id": "doc-1"
},
{
"entity_name": "Quantum Computing",
"entity_type": "technology",
"description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
"source_id": "doc-1"
}
],
"relationships": [
{
"src_id": "CompanyA",
"tgt_id": "ProductX",
"description": "CompanyA develops ProductX",
"keywords": "develop, produce",
"src_id": "Alice",
"tgt_id": "Bob",
"description": "Alice and Bob are research partners.",
"keywords": "collaboration research",
"weight": 1.0,
"source_id": "Source1"
"source_id": "doc-1"
},
{
"src_id": "Alice",
"tgt_id": "Quantum Computing",
"description": "Alice conducts research on quantum computing.",
"keywords": "research expertise",
"weight": 1.0,
"source_id": "doc-1"
},
{
"src_id": "Bob",
"tgt_id": "Quantum Computing",
"description": "Bob researches quantum computing.",
"keywords": "research application",
"weight": 1.0,
"source_id": "doc-1"
}
],
"chunks": [
{
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
"source_id": "Source1",
},
{
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
"source_id": "Source2",
},
{
"content": "None",
"source_id": "UNKNOWN",
},
],
]
}
rag.insert_custom_kg(custom_kg)
@@ -655,16 +669,19 @@ setup_logger("lightrag", level="INFO")
# Note: Default settings use NetworkX
# Initialize LightRAG with Neo4J implementation.
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
graph_storage="Neo4JStorage", #<-----------override KG default
)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
graph_storage="Neo4JStorage", #<-----------override KG default
)
# Initialize database connections
await rag.initialize_storages()
# Initialize pipeline status for document processing
await initialize_pipeline_status()
# Initialize database connections
await rag.initialize_storages()
# Initialize pipeline status for document processing
await initialize_pipeline_status()
return rag
```
see test_neo4j.py for a working example.
@@ -768,7 +785,8 @@ rag.delete_by_doc_id("doc_id")
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
### Create Entities and Relations
<details>
<summary> <b>Create Entities and Relations</b> </summary>
```python
# Create new entity
@@ -790,8 +808,10 @@ relation = rag.create_relation("Google", "Gmail", {
"weight": 2.0
})
```
</details>
### Edit Entities and Relations
<details>
<summary> <b>Edit Entities and Relations</b> </summary>
```python
# Edit an existing entity
@@ -813,6 +833,7 @@ updated_relation = rag.edit_relation("Google", "Google Mail", {
"weight": 3.0
})
```
</details>
All operations are available in both synchronous and asynchronous versions. The asynchronous versions have the prefix "a" (e.g., `acreate_entity`, `aedit_relation`).

View File

@@ -81,34 +81,46 @@ asyncio.run(test_funcs())
embedding_dimension = 3072
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
rag.initialize_storages()
initialize_pipeline_status()
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")
await rag.initialize_storages()
await initialize_pipeline_status()
rag.insert([book1.read(), book2.read()])
return rag
query_text = "What are the main themes?"
print("Result (Naive):")
print(rag.query(query_text, param=QueryParam(mode="naive")))
def main():
rag = asyncio.run(initialize_rag())
print("\nResult (Local):")
print(rag.query(query_text, param=QueryParam(mode="local")))
book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")
print("\nResult (Global):")
print(rag.query(query_text, param=QueryParam(mode="global")))
rag.insert([book1.read(), book2.read()])
print("\nResult (Hybrid):")
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
query_text = "What are the main themes?"
print("Result (Naive):")
print(rag.query(query_text, param=QueryParam(mode="naive")))
print("\nResult (Local):")
print(rag.query(query_text, param=QueryParam(mode="local")))
print("\nResult (Global):")
print(rag.query(query_text, param=QueryParam(mode="global")))
print("\nResult (Hybrid):")
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
if __name__ == "__main__":
main()

View File

@@ -53,3 +53,7 @@ def main():
"What are the top themes in this story?", param=QueryParam(mode=mode)
)
)
if __name__ == "__main__":
main()

View File

@@ -125,7 +125,7 @@ async def initialize_rag():
async def main():
try:
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
# reading file
with open("./book.txt", "r", encoding="utf-8") as f:

View File

@@ -77,7 +77,7 @@ async def initialize_rag():
async def main():
try:
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())

View File

@@ -81,7 +81,7 @@ async def initialize_rag():
async def main():
try:
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())

View File

@@ -107,7 +107,7 @@ async def initialize_rag():
async def main():
try:
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
# Extract and Insert into LightRAG storage
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:

View File

@@ -87,7 +87,7 @@ async def initialize_rag():
async def main():
try:
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())

View File

@@ -59,7 +59,7 @@ async def initialize_rag():
async def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func

View File

@@ -102,7 +102,7 @@ async def initialize_rag():
# Example function demonstrating the new query_with_separate_keyword_extraction usage
async def run_example():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
rag = await initialize_rag()
book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")

View File

@@ -6,7 +6,6 @@ from fastapi import (
FastAPI,
Depends,
)
from fastapi.responses import FileResponse
import asyncio
import os
import logging
@@ -408,10 +407,6 @@ def create_app(args):
name="webui",
)
@app.get("/webui/")
async def webui_root():
return FileResponse(static_dir / "index.html")
return app

View File

@@ -215,9 +215,29 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
| ".scss"
| ".less"
):
content = file.decode("utf-8")
try:
# Try to decode as UTF-8
content = file.decode("utf-8")
# Validate content
if not content or len(content.strip()) == 0:
logger.error(f"Empty content in file: {file_path.name}")
return False
# Check if content looks like binary data string representation
if content.startswith("b'") or content.startswith('b"'):
logger.error(
f"File {file_path.name} appears to contain binary data representation instead of text"
)
return False
except UnicodeDecodeError:
logger.error(
f"File {file_path.name} is not valid UTF-8 encoded text. Please convert it to UTF-8 before processing."
)
return False
case ".pdf":
if not pm.is_installed("pypdf2"):
if not pm.is_installed("pypdf2"): # type: ignore
pm.install("pypdf2")
from PyPDF2 import PdfReader # type: ignore
from io import BytesIO
@@ -227,18 +247,18 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if not pm.is_installed("docx"):
if not pm.is_installed("python-docx"): # type: ignore
pm.install("docx")
from docx import Document
from docx import Document # type: ignore
from io import BytesIO
docx_file = BytesIO(file)
doc = Document(docx_file)
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
case ".pptx":
if not pm.is_installed("pptx"):
if not pm.is_installed("python-pptx"): # type: ignore
pm.install("pptx")
from pptx import Presentation
from pptx import Presentation # type: ignore
from io import BytesIO
pptx_file = BytesIO(file)
@@ -248,9 +268,9 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
if hasattr(shape, "text"):
content += shape.text + "\n"
case ".xlsx":
if not pm.is_installed("openpyxl"):
if not pm.is_installed("openpyxl"): # type: ignore
pm.install("openpyxl")
from openpyxl import load_workbook
from openpyxl import load_workbook # type: ignore
from io import BytesIO
xlsx_file = BytesIO(file)

View File

@@ -44,6 +44,15 @@ class JsonKVStorage(BaseKVStorage):
)
write_json(data_dict, self._file_name)
async def get_all(self) -> dict[str, Any]:
"""Get all data from storage
Returns:
Dictionary containing all stored data
"""
async with self._storage_lock:
return dict(self._data)
async def get_by_id(self, id: str) -> dict[str, Any] | None:
async with self._storage_lock:
return self._data.get(id)

View File

@@ -174,6 +174,14 @@ class TiDBKVStorage(BaseKVStorage):
self.db = None
################ QUERY METHODS ################
async def get_all(self) -> dict[str, Any]:
"""Get all data from storage
Returns:
Dictionary containing all stored data
"""
async with self._storage_lock:
return dict(self._data)
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Fetch doc_full data by id."""

View File

@@ -689,8 +689,24 @@ class LightRAG:
all_new_doc_ids = set(new_docs.keys())
# Exclude IDs of documents that are already in progress
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
# Log ignored document IDs
ignored_ids = [
doc_id for doc_id in unique_new_doc_ids if doc_id not in new_docs
]
if ignored_ids:
logger.warning(
f"Ignoring {len(ignored_ids)} document IDs not found in new_docs"
)
for doc_id in ignored_ids:
logger.warning(f"Ignored document ID: {doc_id}")
# Filter new_docs to only include documents with unique IDs
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
new_docs = {
doc_id: new_docs[doc_id]
for doc_id in unique_new_doc_ids
if doc_id in new_docs
}
if not new_docs:
logger.info("No new unique documents were found.")
@@ -1435,14 +1451,22 @@ class LightRAG:
logger.debug(f"Starting deletion for document {doc_id}")
doc_to_chunk_id = doc_id.replace("doc", "chunk")
# 2. Get all chunks related to this document
# Find all chunks where full_doc_id equals the current doc_id
all_chunks = await self.text_chunks.get_all()
related_chunks = {
chunk_id: chunk_data
for chunk_id, chunk_data in all_chunks.items()
if isinstance(chunk_data, dict)
and chunk_data.get("full_doc_id") == doc_id
}
# 2. Get all related chunks
chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
if not chunks:
if not related_chunks:
logger.warning(f"No chunks found for document {doc_id}")
return
chunk_ids = {chunks["full_doc_id"].replace("doc", "chunk")}
# Get all related chunk IDs
chunk_ids = set(related_chunks.keys())
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
# 3. Before deleting, check the related entities and relationships for these chunks
@@ -1630,9 +1654,18 @@ class LightRAG:
logger.warning(f"Document {doc_id} still exists in full_docs")
# Verify if chunks have been deleted
remaining_chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
if remaining_chunks:
logger.warning(f"Found {len(remaining_chunks)} remaining chunks")
all_remaining_chunks = await self.text_chunks.get_all()
remaining_related_chunks = {
chunk_id: chunk_data
for chunk_id, chunk_data in all_remaining_chunks.items()
if isinstance(chunk_data, dict)
and chunk_data.get("full_doc_id") == doc_id
}
if remaining_related_chunks:
logger.warning(
f"Found {len(remaining_related_chunks)} remaining chunks"
)
# Verify entities and relationships
for chunk_id in chunk_ids: