Merge pull request #1018 from HKUDS/dev

Fix edit entity and relation bugs
This commit is contained in:
Yannick Stephan
2025-03-07 21:26:43 +01:00
committed by GitHub
10 changed files with 341 additions and 3 deletions

View File

@@ -229,3 +229,43 @@ class ChromaVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
raise
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Get all records from the collection
# Since ChromaDB doesn't directly support prefix search on IDs,
# we'll get all records and filter in Python
results = self._collection.get(
include=["metadatas", "documents", "embeddings"]
)
matching_records = []
# Filter records where ID starts with the prefix
for i, record_id in enumerate(results["ids"]):
if record_id.startswith(prefix):
matching_records.append(
{
"id": record_id,
"content": results["documents"][i],
"vector": results["embeddings"][i],
**results["metadatas"][i],
}
)
logger.debug(
f"Found {len(matching_records)} records with prefix '{prefix}'"
)
return matching_records
except Exception as e:
logger.error(f"Error during prefix search in ChromaDB: {str(e)}")
raise

View File

@@ -371,3 +371,24 @@ class FaissVectorDBStorage(BaseVectorStorage):
return False # Return error
return True # Return success
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
matching_records = []
# Search for records with IDs starting with the prefix
for faiss_id, meta in self._id_to_meta.items():
if "__id__" in meta and meta["__id__"].startswith(prefix):
# Create a copy of all metadata and add "id" field
record = {**meta, "id": meta["__id__"]}
matching_records.append(record)
logger.debug(f"Found {len(matching_records)} records with prefix '{prefix}'")
return matching_records

View File

@@ -206,3 +206,28 @@ class MilvusVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Use Milvus query with expression to find IDs with the given prefix
expression = f'id like "{prefix}%"'
results = self._client.query(
collection_name=self.namespace,
filter=expression,
output_fields=list(self.meta_fields) + ["id"],
)
logger.debug(f"Found {len(results)} records with prefix '{prefix}'")
return results
except Exception as e:
logger.error(f"Error searching for records with prefix '{prefix}': {e}")
return []

View File

@@ -1045,6 +1045,32 @@ class MongoVectorDBStorage(BaseVectorStorage):
except PyMongoError as e:
logger.error(f"Error deleting relations for {entity_name}: {str(e)}")
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Use MongoDB regex to find documents where _id starts with the prefix
cursor = self._data.find({"_id": {"$regex": f"^{prefix}"}})
matching_records = await cursor.to_list(length=None)
# Format results
results = [{**doc, "id": doc["_id"]} for doc in matching_records]
logger.debug(
f"Found {len(results)} records with prefix '{prefix}' in {self.namespace}"
)
return results
except PyMongoError as e:
logger.error(f"Error searching by prefix in {self.namespace}: {str(e)}")
return []
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
collection_names = await db.list_collection_names()

View File

@@ -236,3 +236,23 @@ class NanoVectorDBStorage(BaseVectorStorage):
return False # Return error
return True # Return success
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
storage = await self.client_storage
matching_records = []
# Search for records with IDs starting with the prefix
for record in storage["data"]:
if "__id__" in record and record["__id__"].startswith(prefix):
matching_records.append({**record, "id": record["__id__"]})
logger.debug(f"Found {len(matching_records)} records with prefix '{prefix}'")
return matching_records

View File

@@ -494,6 +494,41 @@ class OracleVectorDBStorage(BaseVectorStorage):
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
raise
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Determine the appropriate table based on namespace
table_name = namespace_to_table_name(self.namespace)
# Create SQL query to find records with IDs starting with prefix
search_sql = f"""
SELECT * FROM {table_name}
WHERE workspace = :workspace
AND id LIKE :prefix_pattern
ORDER BY id
"""
params = {"workspace": self.db.workspace, "prefix_pattern": f"{prefix}%"}
# Execute query and get results
results = await self.db.query(search_sql, params, multirows=True)
logger.debug(
f"Found {len(results) if results else 0} records with prefix '{prefix}'"
)
return results or []
except Exception as e:
logger.error(f"Error searching records with prefix '{prefix}': {e}")
return []
@final
@dataclass

View File

@@ -575,6 +575,41 @@ class PGVectorStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for prefix search: {self.namespace}")
return []
search_sql = f"SELECT * FROM {table_name} WHERE workspace=$1 AND id LIKE $2"
params = {"workspace": self.db.workspace, "prefix": f"{prefix}%"}
try:
results = await self.db.query(search_sql, params, multirows=True)
logger.debug(f"Found {len(results)} records with prefix '{prefix}'")
# Format results to match the expected return format
formatted_results = []
for record in results:
formatted_record = dict(record)
# Ensure id field is available (for consistency with NanoVectorDB implementation)
if "id" not in formatted_record:
formatted_record["id"] = record["id"]
formatted_results.append(formatted_record)
return formatted_results
except Exception as e:
logger.error(f"Error during prefix search for '{prefix}': {e}")
return []
@final
@dataclass

View File

@@ -233,3 +233,45 @@ class QdrantVectorDBStorage(BaseVectorStorage):
logger.debug(f"No relations found for entity {entity_name}")
except Exception as e:
logger.error(f"Error deleting relations for {entity_name}: {e}")
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Use scroll method to find records with IDs starting with the prefix
results = self._client.scroll(
collection_name=self.namespace,
scroll_filter=models.Filter(
must=[
models.FieldCondition(
key="id", match=models.MatchText(text=prefix, prefix=True)
)
]
),
with_payload=True,
with_vectors=False,
limit=1000, # Adjust as needed for your use case
)
# Extract matching points
matching_records = results[0]
# Format the results to match expected return format
formatted_results = [
{**point.payload, "id": point.id} for point in matching_records
]
logger.debug(
f"Found {len(formatted_results)} records with prefix '{prefix}'"
)
return formatted_results
except Exception as e:
logger.error(f"Error searching for prefix '{prefix}': {e}")
return []

View File

@@ -414,6 +414,55 @@ class TiDBVectorDBStorage(BaseVectorStorage):
# Ti handles persistence automatically
pass
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
# Determine which table to query based on namespace
if self.namespace == NameSpace.VECTOR_STORE_ENTITIES:
sql_template = """
SELECT entity_id as id, name as entity_name, entity_type, description, content
FROM LIGHTRAG_GRAPH_NODES
WHERE entity_id LIKE :prefix_pattern AND workspace = :workspace
"""
elif self.namespace == NameSpace.VECTOR_STORE_RELATIONSHIPS:
sql_template = """
SELECT relation_id as id, source_name as src_id, target_name as tgt_id,
keywords, description, content
FROM LIGHTRAG_GRAPH_EDGES
WHERE relation_id LIKE :prefix_pattern AND workspace = :workspace
"""
elif self.namespace == NameSpace.VECTOR_STORE_CHUNKS:
sql_template = """
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE chunk_id LIKE :prefix_pattern AND workspace = :workspace
"""
else:
logger.warning(
f"Namespace {self.namespace} not supported for prefix search"
)
return []
# Add prefix pattern parameter with % for SQL LIKE
prefix_pattern = f"{prefix}%"
params = {"prefix_pattern": prefix_pattern, "workspace": self.db.workspace}
try:
results = await self.db.query(sql_template, params=params, multirows=True)
logger.debug(
f"Found {len(results) if results else 0} records with prefix '{prefix}'"
)
return results if results else []
except Exception as e:
logger.error(f"Error searching records with prefix '{prefix}': {e}")
return []
@final
@dataclass
@@ -968,4 +1017,20 @@ SQL_TEMPLATES = {
WHERE (source_name = :source AND target_name = :target)
AND workspace = :workspace
""",
# Search by prefix SQL templates
"search_entity_by_prefix": """
SELECT entity_id as id, name as entity_name, entity_type, description, content
FROM LIGHTRAG_GRAPH_NODES
WHERE entity_id LIKE :prefix_pattern AND workspace = :workspace
""",
"search_relationship_by_prefix": """
SELECT relation_id as id, source_name as src_id, target_name as tgt_id, keywords, description, content
FROM LIGHTRAG_GRAPH_EDGES
WHERE relation_id LIKE :prefix_pattern AND workspace = :workspace
""",
"search_chunk_by_prefix": """
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE chunk_id LIKE :prefix_pattern AND workspace = :workspace
""",
}

View File

@@ -2044,6 +2044,9 @@ class LightRAG:
# Delete old entity record from vector database
old_entity_id = compute_mdhash_id(entity_name, prefix="ent-")
await self.entities_vdb.delete([old_entity_id])
logger.info(
f"Deleted old entity '{entity_name}' and its vector embedding from database"
)
# Update relationship vector representations
for src, tgt, edge_data in relations_to_update:
@@ -2171,6 +2174,15 @@ class LightRAG:
f"Relation from '{source_entity}' to '{target_entity}' does not exist"
)
# Important: First delete the old relation record from the vector database
old_relation_id = compute_mdhash_id(
source_entity + target_entity, prefix="rel-"
)
await self.relationships_vdb.delete([old_relation_id])
logger.info(
f"Deleted old relation record from vector database for relation {source_entity} -> {target_entity}"
)
# 2. Update relation information in the graph
new_edge_data = {**edge_data, **updated_data}
await self.chunk_entity_relation_graph.upsert_edge(
@@ -2669,12 +2681,29 @@ class LightRAG:
# 9. Delete source entities
for entity_name in source_entities:
# Delete entity node
# Delete entity node from knowledge graph
await self.chunk_entity_relation_graph.delete_node(entity_name)
# Delete record from vector database
# Delete entity record from vector database
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
await self.entities_vdb.delete([entity_id])
logger.info(f"Deleted source entity '{entity_name}'")
# Also ensure any relationships specific to this entity are deleted from vector DB
# This is a safety check, as these should have been transformed to the target entity already
entity_relation_prefix = compute_mdhash_id(entity_name, prefix="rel-")
relations_with_entity = await self.relationships_vdb.search_by_prefix(
entity_relation_prefix
)
if relations_with_entity:
relation_ids = [r["id"] for r in relations_with_entity]
await self.relationships_vdb.delete(relation_ids)
logger.info(
f"Deleted {len(relation_ids)} relation records for entity '{entity_name}' from vector database"
)
logger.info(
f"Deleted source entity '{entity_name}' and its vector embedding from database"
)
# 10. Save changes
await self._merge_entities_done()