修改llm为deepseek-chat

This commit is contained in:
yangdx
2025-01-15 00:55:48 +08:00
parent 0bfeb237e3
commit 294b0359e8

View File

@@ -2,34 +2,46 @@ import asyncio
import os
import inspect
import logging
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.llm import openai_complete_if_cache, ollama_embedding
from lightrag.utils import EmbeddingFunc
WORKING_DIR = "./dickens"
load_dotenv()
WORKING_DIR = "./examples/input"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"deepseek-chat",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("DEEPSEEK_API_KEY"),
base_url=os.getenv("DEEPSEEK__ENDPOINT"),
**kwargs,
)
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="gemma2:2b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
texts, embed_model="nomic-embed-text", host="http://m4.lan.znipower.com:11434"
),
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
with open("./input/book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search