修改llm为deepseek-chat
This commit is contained in:
@@ -2,34 +2,46 @@ import asyncio
|
|||||||
import os
|
import os
|
||||||
import inspect
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
|
from dotenv import load_dotenv
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
from lightrag.llm import openai_complete_if_cache, ollama_embedding
|
||||||
from lightrag.utils import EmbeddingFunc
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
WORKING_DIR = "./dickens"
|
load_dotenv()
|
||||||
|
|
||||||
|
WORKING_DIR = "./examples/input"
|
||||||
|
|
||||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
async def llm_model_func(
|
||||||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||||
|
) -> str:
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
"deepseek-chat",
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
api_key=os.getenv("DEEPSEEK_API_KEY"),
|
||||||
|
base_url=os.getenv("DEEPSEEK__ENDPOINT"),
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=ollama_model_complete,
|
llm_model_func=llm_model_func,
|
||||||
llm_model_name="gemma2:2b",
|
|
||||||
llm_model_max_async=4,
|
|
||||||
llm_model_max_token_size=32768,
|
|
||||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(
|
||||||
embedding_dim=768,
|
embedding_dim=768,
|
||||||
max_token_size=8192,
|
max_token_size=8192,
|
||||||
func=lambda texts: ollama_embedding(
|
func=lambda texts: ollama_embedding(
|
||||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
texts, embed_model="nomic-embed-text", host="http://m4.lan.znipower.com:11434"
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
with open("./input/book.txt", "r", encoding="utf-8") as f:
|
||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
|
|
||||||
# Perform naive search
|
# Perform naive search
|
||||||
|
Reference in New Issue
Block a user