Merge branch 'HKUDS:main' into main
This commit is contained in:
@@ -12,7 +12,7 @@
|
||||
</p>
|
||||
<p>
|
||||
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
|
||||
<img src="https://img.shields.io/badge/python->=3.9.11-blue">
|
||||
<img src="https://img.shields.io/badge/python->=3.10-blue">
|
||||
<a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
|
||||
<a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
|
||||
</p>
|
||||
|
@@ -59,6 +59,9 @@ async def _handle_entity_relation_summary(
|
||||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||||
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||
if len(tokens) < summary_max_tokens: # No need for summary
|
||||
@@ -70,6 +73,7 @@ async def _handle_entity_relation_summary(
|
||||
context_base = dict(
|
||||
entity_name=entity_or_relation_name,
|
||||
description_list=use_description.split(GRAPH_FIELD_SEP),
|
||||
language=language,
|
||||
)
|
||||
use_prompt = prompt_template.format(**context_base)
|
||||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||||
@@ -444,6 +448,9 @@ async def kg_query(
|
||||
)
|
||||
else:
|
||||
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
# Set mode
|
||||
if query_param.mode not in ["local", "global", "hybrid"]:
|
||||
@@ -453,7 +460,7 @@ async def kg_query(
|
||||
# LLM generate keywords
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
||||
kw_prompt = kw_prompt_temp.format(query=query, examples=examples)
|
||||
kw_prompt = kw_prompt_temp.format(query=query, examples=examples, language=language)
|
||||
result = await use_model_func(kw_prompt)
|
||||
logger.info("kw_prompt result:")
|
||||
print(result)
|
||||
|
@@ -33,7 +33,7 @@ Format each relationship as ("relationship"{tuple_delimiter}<source_entity>{tupl
|
||||
3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.
|
||||
Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_level_keywords>)
|
||||
|
||||
4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.
|
||||
4. Return output in {language} as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.
|
||||
|
||||
5. When finished, output {completion_delimiter}
|
||||
|
||||
@@ -131,7 +131,7 @@ Given one or two entities, and a list of descriptions, all related to the same e
|
||||
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
||||
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
||||
Make sure it is written in third person, and include the entity names so we the have full context.
|
||||
Use Chinese as output language.
|
||||
Use {language} as output language.
|
||||
|
||||
#######
|
||||
-Data-
|
||||
@@ -178,7 +178,7 @@ Add sections and commentary to the response as appropriate for the length and fo
|
||||
PROMPTS["keywords_extraction"] = """---Role---
|
||||
|
||||
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
|
||||
Use Chinese as output language.
|
||||
Use {language} as output language.
|
||||
|
||||
---Goal---
|
||||
|
||||
|
Reference in New Issue
Block a user