support TiDBGraphStorage
This commit is contained in:
@@ -21,8 +21,7 @@ TIDB_HOST = ""
|
||||
TIDB_PORT = ""
|
||||
TIDB_USER = ""
|
||||
TIDB_PASSWORD = ""
|
||||
TIDB_DATABASE = ""
|
||||
|
||||
TIDB_DATABASE = "lightrag"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -93,6 +92,7 @@ async def main():
|
||||
),
|
||||
kv_storage="TiDBKVStorage",
|
||||
vector_storage="TiDBVectorDBStorage",
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
if rag.llm_response_cache:
|
||||
@@ -102,6 +102,7 @@ async def main():
|
||||
rag.entities_vdb.db = tidb
|
||||
rag.relationships_vdb.db = tidb
|
||||
rag.chunks_vdb.db = tidb
|
||||
rag.chunk_entity_relation_graph.db = tidb
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -7,7 +7,7 @@ import numpy as np
|
||||
from sqlalchemy import create_engine, text
|
||||
from tqdm import tqdm
|
||||
|
||||
from lightrag.base import BaseVectorStorage, BaseKVStorage
|
||||
from lightrag.base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
|
||||
from lightrag.utils import logger
|
||||
|
||||
|
||||
@@ -282,33 +282,180 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
if self.namespace == "entities":
|
||||
data = []
|
||||
for item in list_data:
|
||||
merge_sql = SQL_TEMPLATES["upsert_entity"]
|
||||
data.append(
|
||||
{
|
||||
"id": item["id"],
|
||||
"name": item["entity_name"],
|
||||
"content": item["content"],
|
||||
"content_vector": f"{item["content_vector"].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
)
|
||||
await self.db.execute(merge_sql, data)
|
||||
param = {
|
||||
"id": item["id"],
|
||||
"name": item["entity_name"],
|
||||
"content": item["content"],
|
||||
"content_vector": f"{item["content_vector"].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
# update entity_id if node inserted by graph_storage_instance before
|
||||
has = await self.db.query(SQL_TEMPLATES["has_entity"], param)
|
||||
if has["cnt"] != 0:
|
||||
await self.db.execute(SQL_TEMPLATES["update_entity"], param)
|
||||
continue
|
||||
|
||||
data.append(param)
|
||||
if data:
|
||||
merge_sql = SQL_TEMPLATES["insert_entity"]
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
elif self.namespace == "relationships":
|
||||
data = []
|
||||
for item in list_data:
|
||||
merge_sql = SQL_TEMPLATES["upsert_relationship"]
|
||||
data.append(
|
||||
{
|
||||
"id": item["id"],
|
||||
"source_name": item["src_id"],
|
||||
"target_name": item["tgt_id"],
|
||||
"content": item["content"],
|
||||
"content_vector": f"{item["content_vector"].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
)
|
||||
await self.db.execute(merge_sql, data)
|
||||
param = {
|
||||
"id": item["id"],
|
||||
"source_name": item["src_id"],
|
||||
"target_name": item["tgt_id"],
|
||||
"content": item["content"],
|
||||
"content_vector": f"{item["content_vector"].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
# update relation_id if node inserted by graph_storage_instance before
|
||||
has = await self.db.query(SQL_TEMPLATES["has_relationship"], param)
|
||||
if has["cnt"] != 0:
|
||||
await self.db.execute(SQL_TEMPLATES["update_relationship"], param)
|
||||
continue
|
||||
|
||||
data.append(param)
|
||||
if data:
|
||||
merge_sql = SQL_TEMPLATES["insert_relationship"]
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TiDBGraphStorage(BaseGraphStorage):
|
||||
def __post_init__(self):
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
|
||||
#################### upsert method ################
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
||||
entity_name = node_id
|
||||
entity_type = node_data["entity_type"]
|
||||
description = node_data["description"]
|
||||
source_id = node_data["source_id"]
|
||||
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
|
||||
content = entity_name + description
|
||||
contents = [content]
|
||||
batches = [
|
||||
contents[i : i + self._max_batch_size]
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
embeddings_list = await asyncio.gather(
|
||||
*[self.embedding_func(batch) for batch in batches]
|
||||
)
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
content_vector = embeddings[0]
|
||||
sql = SQL_TEMPLATES["upsert_node"]
|
||||
data = {
|
||||
"workspace": self.db.workspace,
|
||||
"name": entity_name,
|
||||
"entity_type": entity_type,
|
||||
"description": description,
|
||||
"source_chunk_id": source_id,
|
||||
"content": content,
|
||||
"content_vector": f"{content_vector.tolist()}",
|
||||
}
|
||||
await self.db.execute(sql, data)
|
||||
|
||||
async def upsert_edge(
|
||||
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||||
):
|
||||
source_name = source_node_id
|
||||
target_name = target_node_id
|
||||
weight = edge_data["weight"]
|
||||
keywords = edge_data["keywords"]
|
||||
description = edge_data["description"]
|
||||
source_chunk_id = edge_data["source_id"]
|
||||
logger.debug(
|
||||
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
|
||||
)
|
||||
|
||||
content = keywords + source_name + target_name + description
|
||||
contents = [content]
|
||||
batches = [
|
||||
contents[i : i + self._max_batch_size]
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
embeddings_list = await asyncio.gather(
|
||||
*[self.embedding_func(batch) for batch in batches]
|
||||
)
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
content_vector = embeddings[0]
|
||||
merge_sql = SQL_TEMPLATES["upsert_edge"]
|
||||
data = {
|
||||
"workspace": self.db.workspace,
|
||||
"source_name": source_name,
|
||||
"target_name": target_name,
|
||||
"weight": weight,
|
||||
"keywords": keywords,
|
||||
"description": description,
|
||||
"source_chunk_id": source_chunk_id,
|
||||
"content": content,
|
||||
"content_vector": f"{content_vector.tolist()}",
|
||||
}
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
# Query
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
sql = SQL_TEMPLATES["has_entity"]
|
||||
param = {"name": node_id, "workspace": self.db.workspace}
|
||||
has = await self.db.query(sql, param)
|
||||
return has["cnt"] != 0
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
sql = SQL_TEMPLATES["has_relationship"]
|
||||
param = {
|
||||
"source_name": source_node_id,
|
||||
"target_name": target_node_id,
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
has = await self.db.query(sql, param)
|
||||
return has["cnt"] != 0
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
sql = SQL_TEMPLATES["node_degree"]
|
||||
param = {"name": node_id, "workspace": self.db.workspace}
|
||||
result = await self.db.query(sql, param)
|
||||
return result["cnt"]
|
||||
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
|
||||
return degree
|
||||
|
||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||
sql = SQL_TEMPLATES["get_node"]
|
||||
param = {"name": node_id, "workspace": self.db.workspace}
|
||||
return await self.db.query(sql, param)
|
||||
|
||||
async def get_edge(
|
||||
self, source_node_id: str, target_node_id: str
|
||||
) -> Union[dict, None]:
|
||||
sql = SQL_TEMPLATES["get_edge"]
|
||||
param = {
|
||||
"source_name": source_node_id,
|
||||
"target_name": target_node_id,
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
return await self.db.query(sql, param)
|
||||
|
||||
async def get_node_edges(
|
||||
self, source_node_id: str
|
||||
) -> Union[list[tuple[str, str]], None]:
|
||||
sql = SQL_TEMPLATES["get_node_edges"]
|
||||
param = {"source_name": source_node_id, "workspace": self.db.workspace}
|
||||
res = await self.db.query(sql, param, multirows=True)
|
||||
if res:
|
||||
data = [(i["source_name"], i["target_name"]) for i in res]
|
||||
return data
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
N_T = {
|
||||
@@ -362,14 +509,17 @@ TABLES = {
|
||||
"ddl": """
|
||||
CREATE TABLE LIGHTRAG_GRAPH_NODES (
|
||||
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
||||
`entity_id` VARCHAR(256) NOT NULL,
|
||||
`entity_id` VARCHAR(256),
|
||||
`workspace` varchar(1024),
|
||||
`name` VARCHAR(2048),
|
||||
`entity_type` VARCHAR(1024),
|
||||
`description` LONGTEXT,
|
||||
`source_chunk_id` VARCHAR(256),
|
||||
`content` LONGTEXT,
|
||||
`content_vector` VECTOR,
|
||||
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
|
||||
`updatetime` DATETIME DEFAULT NULL,
|
||||
UNIQUE KEY (`entity_id`)
|
||||
KEY (`entity_id`)
|
||||
);
|
||||
"""
|
||||
},
|
||||
@@ -377,15 +527,19 @@ TABLES = {
|
||||
"ddl": """
|
||||
CREATE TABLE LIGHTRAG_GRAPH_EDGES (
|
||||
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
||||
`relation_id` VARCHAR(256) NOT NULL,
|
||||
`relation_id` VARCHAR(256),
|
||||
`workspace` varchar(1024),
|
||||
`source_name` VARCHAR(2048),
|
||||
`target_name` VARCHAR(2048),
|
||||
`weight` DECIMAL,
|
||||
`keywords` TEXT,
|
||||
`description` LONGTEXT,
|
||||
`source_chunk_id` varchar(256),
|
||||
`content` LONGTEXT,
|
||||
`content_vector` VECTOR,
|
||||
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
|
||||
`updatetime` DATETIME DEFAULT NULL,
|
||||
UNIQUE KEY (`relation_id`)
|
||||
KEY (`relation_id`)
|
||||
);
|
||||
"""
|
||||
},
|
||||
@@ -416,39 +570,87 @@ SQL_TEMPLATES = {
|
||||
INSERT INTO LIGHTRAG_DOC_FULL (doc_id, content, workspace)
|
||||
VALUES (:id, :content, :workspace)
|
||||
ON DUPLICATE KEY UPDATE content = VALUES(content), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
||||
""",
|
||||
""",
|
||||
"upsert_chunk": """
|
||||
INSERT INTO LIGHTRAG_DOC_CHUNKS(chunk_id, content, tokens, chunk_order_index, full_doc_id, content_vector, workspace)
|
||||
VALUES (:id, :content, :tokens, :chunk_order_index, :full_doc_id, :content_vector, :workspace)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
content = VALUES(content), tokens = VALUES(tokens), chunk_order_index = VALUES(chunk_order_index),
|
||||
full_doc_id = VALUES(full_doc_id), content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
||||
""",
|
||||
""",
|
||||
# SQL for VectorStorage
|
||||
"entities": """SELECT n.name as entity_name FROM
|
||||
(SELECT entity_id as id, name, VEC_COSINE_DISTANCE(content_vector,:embedding_string) as distance
|
||||
FROM LIGHTRAG_GRAPH_NODES WHERE workspace = :workspace) n
|
||||
WHERE n.distance>:better_than_threshold ORDER BY n.distance DESC LIMIT :top_k""",
|
||||
WHERE n.distance>:better_than_threshold ORDER BY n.distance DESC LIMIT :top_k
|
||||
""",
|
||||
"relationships": """SELECT e.source_name as src_id, e.target_name as tgt_id FROM
|
||||
(SELECT source_name, target_name, VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
||||
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace) e
|
||||
WHERE e.distance>:better_than_threshold ORDER BY e.distance DESC LIMIT :top_k""",
|
||||
WHERE e.distance>:better_than_threshold ORDER BY e.distance DESC LIMIT :top_k
|
||||
""",
|
||||
"chunks": """SELECT c.id FROM
|
||||
(SELECT chunk_id as id,VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
||||
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace = :workspace) c
|
||||
WHERE c.distance>:better_than_threshold ORDER BY c.distance DESC LIMIT :top_k""",
|
||||
"upsert_entity": """
|
||||
WHERE c.distance>:better_than_threshold ORDER BY c.distance DESC LIMIT :top_k
|
||||
""",
|
||||
"has_entity": """
|
||||
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
||||
""",
|
||||
"has_relationship": """
|
||||
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
||||
""",
|
||||
"update_entity": """
|
||||
UPDATE LIGHTRAG_GRAPH_NODES SET
|
||||
entity_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
|
||||
WHERE workspace = :workspace AND name = :name
|
||||
""",
|
||||
"update_relationship": """
|
||||
UPDATE LIGHTRAG_GRAPH_EDGES SET
|
||||
relation_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
|
||||
WHERE workspace = :workspace AND source_name = :source_name AND target_name = :target_name
|
||||
""",
|
||||
"insert_entity": """
|
||||
INSERT INTO LIGHTRAG_GRAPH_NODES(entity_id, name, content, content_vector, workspace)
|
||||
VALUES(:id, :name, :content, :content_vector, :workspace)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
name = VALUES(name), content = VALUES(content), content_vector = VALUES(content_vector),
|
||||
workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_relationship": """
|
||||
""",
|
||||
"insert_relationship": """
|
||||
INSERT INTO LIGHTRAG_GRAPH_EDGES(relation_id, source_name, target_name, content, content_vector, workspace)
|
||||
VALUES(:id, :source_name, :target_name, :content, :content_vector, :workspace)
|
||||
""",
|
||||
# SQL for GraphStorage
|
||||
"get_node": """
|
||||
SELECT entity_id AS id, workspace, name, entity_type, description, source_chunk_id AS source_id, content, content_vector
|
||||
FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
||||
""",
|
||||
"get_edge": """
|
||||
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id AS source_id, content, content_vector
|
||||
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
||||
""",
|
||||
"get_node_edges": """
|
||||
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id, content, content_vector
|
||||
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND workspace = :workspace
|
||||
""",
|
||||
"node_degree": """
|
||||
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace AND :name IN (source_name, target_name)
|
||||
""",
|
||||
"upsert_node": """
|
||||
INSERT INTO LIGHTRAG_GRAPH_NODES(name, content, content_vector, workspace, source_chunk_id, entity_type, description)
|
||||
VALUES(:name, :content, :content_vector, :workspace, :source_chunk_id, :entity_type, :description)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
name = VALUES(name), content = VALUES(content), content_vector = VALUES(content_vector),
|
||||
workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
||||
source_chunk_id = VALUES(source_chunk_id), entity_type = VALUES(entity_type), description = VALUES(description)
|
||||
""",
|
||||
"upsert_edge": """
|
||||
INSERT INTO LIGHTRAG_GRAPH_EDGES(source_name, target_name, content, content_vector,
|
||||
workspace, weight, keywords, description, source_chunk_id)
|
||||
VALUES(:source_name, :target_name, :content, :content_vector,
|
||||
:workspace, :weight, :keywords, :description, :source_chunk_id)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
source_name = VALUES(source_name), target_name = VALUES(target_name), content = VALUES(content),
|
||||
content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
||||
""",
|
||||
content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
||||
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
|
||||
source_chunk_id = VALUES(source_chunk_id)
|
||||
""",
|
||||
}
|
||||
|
@@ -79,6 +79,7 @@ MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
||||
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
||||
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
||||
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
||||
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
||||
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
||||
|
||||
|
||||
@@ -282,6 +283,7 @@ class LightRAG:
|
||||
"Neo4JStorage": Neo4JStorage,
|
||||
"OracleGraphStorage": OracleGraphStorage,
|
||||
"AGEStorage": AGEStorage,
|
||||
"TiDBGraphStorage": TiDBGraphStorage,
|
||||
# "ArangoDBStorage": ArangoDBStorage
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user