Add ENABLE_LLM_CACHE env support
This commit is contained in:
@@ -40,7 +40,6 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
||||
# MAX_TOKEN_ENTITY_DESC=4000
|
||||
|
||||
### Settings for document indexing
|
||||
ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
||||
SUMMARY_LANGUAGE=English
|
||||
# CHUNK_SIZE=1200
|
||||
# CHUNK_OVERLAP_SIZE=100
|
||||
@@ -64,6 +63,8 @@ TEMPERATURE=0.5
|
||||
MAX_ASYNC=4
|
||||
### Max tokens send to LLM (less than context size of the model)
|
||||
MAX_TOKENS=32768
|
||||
ENABLE_LLM_CACHE=true
|
||||
ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
||||
|
||||
### Ollama example (For local services installed with docker, you can use host.docker.internal as host)
|
||||
LLM_BINDING=ollama
|
||||
|
@@ -297,6 +297,9 @@ def parse_args() -> argparse.Namespace:
|
||||
args.enable_llm_cache_for_extract = get_env_value(
|
||||
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
||||
)
|
||||
args.enable_llm_cache = get_env_value(
|
||||
"ENABLE_LLM_CACHE", True, bool
|
||||
)
|
||||
|
||||
# Inject LLM temperature configuration
|
||||
args.temperature = get_env_value("TEMPERATURE", 0.5, float)
|
||||
|
@@ -316,6 +316,7 @@ def create_app(args):
|
||||
"cosine_better_than_threshold": args.cosine_threshold
|
||||
},
|
||||
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
|
||||
enable_llm_cache=args.enable_llm_cache,
|
||||
embedding_cache_config={
|
||||
"enabled": True,
|
||||
"similarity_threshold": 0.95,
|
||||
@@ -347,6 +348,7 @@ def create_app(args):
|
||||
"cosine_better_than_threshold": args.cosine_threshold
|
||||
},
|
||||
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
|
||||
enable_llm_cache=args.enable_llm_cache,
|
||||
embedding_cache_config={
|
||||
"enabled": True,
|
||||
"similarity_threshold": 0.95,
|
||||
@@ -469,6 +471,7 @@ def create_app(args):
|
||||
"graph_storage": args.graph_storage,
|
||||
"vector_storage": args.vector_storage,
|
||||
"enable_llm_cache_for_extract": args.enable_llm_cache_for_extract,
|
||||
"enable_llm_cache": args.enable_llm_cache,
|
||||
},
|
||||
"auth_mode": auth_mode,
|
||||
"pipeline_busy": pipeline_status.get("busy", False),
|
||||
|
@@ -229,8 +229,12 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
ASCIIColors.yellow(f"{args.max_async}")
|
||||
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
||||
ASCIIColors.yellow(f"{args.max_tokens}")
|
||||
ASCIIColors.white(" └─ Timeout: ", end="")
|
||||
ASCIIColors.white(" ├─ Timeout: ", end="")
|
||||
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
|
||||
ASCIIColors.white(" ├─ LLM Cache Enabled: ", end="")
|
||||
ASCIIColors.yellow(f"{args.enable_llm_cache}")
|
||||
ASCIIColors.white(" └─ LLM Cache for Extraction Enabled: ", end="")
|
||||
ASCIIColors.yellow(f"{args.enable_llm_cache_for_extract}")
|
||||
|
||||
# Embedding Configuration
|
||||
ASCIIColors.magenta("\n📊 Embedding Configuration:")
|
||||
@@ -257,10 +261,8 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
||||
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
||||
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
||||
ASCIIColors.white(" ├─ Top-K: ", end="")
|
||||
ASCIIColors.white(" └─ Top-K: ", end="")
|
||||
ASCIIColors.yellow(f"{args.top_k}")
|
||||
ASCIIColors.white(" └─ LLM Cache for Extraction Enabled: ", end="")
|
||||
ASCIIColors.yellow(f"{args.enable_llm_cache_for_extract}")
|
||||
|
||||
# System Configuration
|
||||
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
||||
|
Reference in New Issue
Block a user