Fixed retry strategy, message history and inference params; Cleaned up Bedrock example
This commit is contained in:
@@ -3,46 +3,39 @@ LightRAG meets Amazon Bedrock ⛰️
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
import logging
|
||||||
|
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import bedrock_complete, bedrock_embedding
|
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||||
from lightrag.utils import EmbeddingFunc
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
WORKING_DIR = "./dickens"
|
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=bedrock_complete,
|
llm_model_func=bedrock_complete,
|
||||||
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
|
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||||
node2vec_params = {
|
|
||||||
'dimensions': 1024,
|
|
||||||
'num_walks': 10,
|
|
||||||
'walk_length': 40,
|
|
||||||
'window_size': 2,
|
|
||||||
'iterations': 3,
|
|
||||||
'random_seed': 3
|
|
||||||
},
|
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(
|
||||||
embedding_dim=1024,
|
embedding_dim=1024,
|
||||||
max_token_size=8192,
|
max_token_size=8192,
|
||||||
func=lambda texts: bedrock_embedding(texts)
|
func=bedrock_embedding
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
with open("./book.txt") as f:
|
with open("./book.txt", 'r', encoding='utf-8') as f:
|
||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
|
|
||||||
# Naive search
|
for mode in ["naive", "local", "global", "hybrid"]:
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
print("\n+-" + "-" * len(mode) + "-+")
|
||||||
|
print(f"| {mode.capitalize()} |")
|
||||||
# Local search
|
print("+-" + "-" * len(mode) + "-+\n")
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
print(
|
||||||
|
rag.query(
|
||||||
# Global search
|
"What are the top themes in this story?",
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
param=QueryParam(mode=mode)
|
||||||
|
)
|
||||||
# Hybrid search
|
)
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
|
||||||
|
@@ -1,6 +1,9 @@
|
|||||||
import os
|
import os
|
||||||
|
import copy
|
||||||
import json
|
import json
|
||||||
|
import botocore
|
||||||
import aioboto3
|
import aioboto3
|
||||||
|
import botocore.errorfactory
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import ollama
|
import ollama
|
||||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||||
@@ -50,43 +53,70 @@ async def openai_complete_if_cache(
|
|||||||
)
|
)
|
||||||
return response.choices[0].message.content
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
|
||||||
|
class BedrockError(Exception):
|
||||||
|
"""Generic error for issues related to Amazon Bedrock"""
|
||||||
|
|
||||||
|
|
||||||
@retry(
|
@retry(
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(5),
|
||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
wait=wait_exponential(multiplier=1, max=60),
|
||||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
retry=retry_if_exception_type((BedrockError)),
|
||||||
)
|
)
|
||||||
async def bedrock_complete_if_cache(
|
async def bedrock_complete_if_cache(
|
||||||
model, prompt, system_prompt=None, history_messages=[], base_url=None,
|
model, prompt, system_prompt=None, history_messages=[],
|
||||||
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
||||||
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
||||||
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
||||||
|
|
||||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
# Fix message history format
|
||||||
|
|
||||||
messages = []
|
messages = []
|
||||||
messages.extend(history_messages)
|
for history_message in history_messages:
|
||||||
|
message = copy.copy(history_message)
|
||||||
|
message['content'] = [{'text': message['content']}]
|
||||||
|
messages.append(message)
|
||||||
|
|
||||||
|
# Add user prompt
|
||||||
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
||||||
|
|
||||||
|
# Initialize Converse API arguments
|
||||||
args = {
|
args = {
|
||||||
'modelId': model,
|
'modelId': model,
|
||||||
'messages': messages
|
'messages': messages
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Define system prompt
|
||||||
if system_prompt:
|
if system_prompt:
|
||||||
args['system'] = [{'text': system_prompt}]
|
args['system'] = [{'text': system_prompt}]
|
||||||
|
|
||||||
|
# Map and set up inference parameters
|
||||||
|
inference_params_map = {
|
||||||
|
'max_tokens': "maxTokens",
|
||||||
|
'top_p': "topP",
|
||||||
|
'stop_sequences': "stopSequences"
|
||||||
|
}
|
||||||
|
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
||||||
|
args['inferenceConfig'] = {}
|
||||||
|
for param in inference_params:
|
||||||
|
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
||||||
|
|
||||||
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||||
if hashing_kv is not None:
|
if hashing_kv is not None:
|
||||||
args_hash = compute_args_hash(model, messages)
|
args_hash = compute_args_hash(model, messages)
|
||||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||||
if if_cache_return is not None:
|
if if_cache_return is not None:
|
||||||
return if_cache_return["return"]
|
return if_cache_return["return"]
|
||||||
|
|
||||||
|
# Call model via Converse API
|
||||||
session = aioboto3.Session()
|
session = aioboto3.Session()
|
||||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||||
|
|
||||||
response = await bedrock_async_client.converse(**args, **kwargs)
|
try:
|
||||||
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||||
|
except Exception as e:
|
||||||
|
raise BedrockError(e)
|
||||||
|
|
||||||
if hashing_kv is not None:
|
if hashing_kv is not None:
|
||||||
await hashing_kv.upsert({
|
await hashing_kv.upsert({
|
||||||
@@ -200,7 +230,7 @@ async def bedrock_complete(
|
|||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
return await bedrock_complete_if_cache(
|
return await bedrock_complete_if_cache(
|
||||||
"anthropic.claude-3-sonnet-20240229-v1:0",
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
||||||
prompt,
|
prompt,
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
history_messages=history_messages,
|
history_messages=history_messages,
|
||||||
|
Reference in New Issue
Block a user