Fixed retry strategy, message history and inference params; Cleaned up Bedrock example
This commit is contained in:
@@ -3,46 +3,39 @@ LightRAG meets Amazon Bedrock ⛰️
|
||||
"""
|
||||
|
||||
import os
|
||||
import logging
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
|
||||
node2vec_params = {
|
||||
'dimensions': 1024,
|
||||
'num_walks': 10,
|
||||
'walk_length': 40,
|
||||
'window_size': 2,
|
||||
'iterations': 3,
|
||||
'random_seed': 3
|
||||
},
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: bedrock_embedding(texts)
|
||||
func=bedrock_embedding
|
||||
)
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
with open("./book.txt", 'r', encoding='utf-8') as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
for mode in ["naive", "local", "global", "hybrid"]:
|
||||
print("\n+-" + "-" * len(mode) + "-+")
|
||||
print(f"| {mode.capitalize()} |")
|
||||
print("+-" + "-" * len(mode) + "-+\n")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode=mode)
|
||||
)
|
||||
)
|
||||
|
@@ -1,6 +1,9 @@
|
||||
import os
|
||||
import copy
|
||||
import json
|
||||
import botocore
|
||||
import aioboto3
|
||||
import botocore.errorfactory
|
||||
import numpy as np
|
||||
import ollama
|
||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||
@@ -50,43 +53,70 @@ async def openai_complete_if_cache(
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
class BedrockError(Exception):
|
||||
"""Generic error for issues related to Amazon Bedrock"""
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
stop=stop_after_attempt(5),
|
||||
wait=wait_exponential(multiplier=1, max=60),
|
||||
retry=retry_if_exception_type((BedrockError)),
|
||||
)
|
||||
async def bedrock_complete_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[], base_url=None,
|
||||
model, prompt, system_prompt=None, history_messages=[],
|
||||
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
||||
) -> str:
|
||||
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
||||
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
||||
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
|
||||
# Fix message history format
|
||||
messages = []
|
||||
messages.extend(history_messages)
|
||||
for history_message in history_messages:
|
||||
message = copy.copy(history_message)
|
||||
message['content'] = [{'text': message['content']}]
|
||||
messages.append(message)
|
||||
|
||||
# Add user prompt
|
||||
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
||||
|
||||
# Initialize Converse API arguments
|
||||
args = {
|
||||
'modelId': model,
|
||||
'messages': messages
|
||||
}
|
||||
|
||||
# Define system prompt
|
||||
if system_prompt:
|
||||
args['system'] = [{'text': system_prompt}]
|
||||
|
||||
# Map and set up inference parameters
|
||||
inference_params_map = {
|
||||
'max_tokens': "maxTokens",
|
||||
'top_p': "topP",
|
||||
'stop_sequences': "stopSequences"
|
||||
}
|
||||
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
||||
args['inferenceConfig'] = {}
|
||||
for param in inference_params:
|
||||
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash(model, messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
|
||||
# Call model via Converse API
|
||||
session = aioboto3.Session()
|
||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||
|
||||
try:
|
||||
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||
except Exception as e:
|
||||
raise BedrockError(e)
|
||||
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({
|
||||
@@ -200,7 +230,7 @@ async def bedrock_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await bedrock_complete_if_cache(
|
||||
"anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"anthropic.claude-3-haiku-20240307-v1:0",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
|
Reference in New Issue
Block a user