Fixed retry strategy, message history and inference params; Cleaned up Bedrock example

This commit is contained in:
João Galego
2024-10-18 16:50:02 +01:00
parent 1fc55b18d5
commit 37d713a5c8
2 changed files with 55 additions and 32 deletions

View File

@@ -3,46 +3,39 @@ LightRAG meets Amazon Bedrock ⛰️
"""
import os
import logging
from lightrag import LightRAG, QueryParam
from lightrag.llm import bedrock_complete, bedrock_embedding
from lightrag.utils import EmbeddingFunc
WORKING_DIR = "./dickens"
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=bedrock_complete,
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
node2vec_params = {
'dimensions': 1024,
'num_walks': 10,
'walk_length': 40,
'window_size': 2,
'iterations': 3,
'random_seed': 3
},
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: bedrock_embedding(texts)
func=bedrock_embedding
)
)
with open("./book.txt") as f:
with open("./book.txt", 'r', encoding='utf-8') as f:
rag.insert(f.read())
# Naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
for mode in ["naive", "local", "global", "hybrid"]:
print("\n+-" + "-" * len(mode) + "-+")
print(f"| {mode.capitalize()} |")
print("+-" + "-" * len(mode) + "-+\n")
print(
rag.query(
"What are the top themes in this story?",
param=QueryParam(mode=mode)
)
)

View File

@@ -1,6 +1,9 @@
import os
import copy
import json
import botocore
import aioboto3
import botocore.errorfactory
import numpy as np
import ollama
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
@@ -50,43 +53,70 @@ async def openai_complete_if_cache(
)
return response.choices[0].message.content
class BedrockError(Exception):
"""Generic error for issues related to Amazon Bedrock"""
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, max=60),
retry=retry_if_exception_type((BedrockError)),
)
async def bedrock_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[], base_url=None,
model, prompt, system_prompt=None, history_messages=[],
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
) -> str:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
# Fix message history format
messages = []
messages.extend(history_messages)
for history_message in history_messages:
message = copy.copy(history_message)
message['content'] = [{'text': message['content']}]
messages.append(message)
# Add user prompt
messages.append({'role': "user", 'content': [{'text': prompt}]})
# Initialize Converse API arguments
args = {
'modelId': model,
'messages': messages
}
# Define system prompt
if system_prompt:
args['system'] = [{'text': system_prompt}]
# Map and set up inference parameters
inference_params_map = {
'max_tokens': "maxTokens",
'top_p': "topP",
'stop_sequences': "stopSequences"
}
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
args['inferenceConfig'] = {}
for param in inference_params:
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Call model via Converse API
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
response = await bedrock_async_client.converse(**args, **kwargs)
try:
response = await bedrock_async_client.converse(**args, **kwargs)
except Exception as e:
raise BedrockError(e)
if hashing_kv is not None:
await hashing_kv.upsert({
@@ -200,7 +230,7 @@ async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await bedrock_complete_if_cache(
"anthropic.claude-3-sonnet-20240229-v1:0",
"anthropic.claude-3-haiku-20240307-v1:0",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,