Implement the missing methods.
This commit is contained in:
@@ -8,7 +8,7 @@ from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Union, final
|
||||
import numpy as np
|
||||
import pipmaster as pm
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
@@ -613,20 +613,258 @@ class AGEStorage(BaseGraphStorage):
|
||||
await self._driver.putconn(connection)
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified label
|
||||
|
||||
Args:
|
||||
node_id: The label of the node to delete
|
||||
"""
|
||||
entity_name_label = node_id.strip('"')
|
||||
|
||||
query = """
|
||||
MATCH (n:`{label}`)
|
||||
DETACH DELETE n
|
||||
"""
|
||||
params = {"label": AGEStorage._encode_graph_label(entity_name_label)}
|
||||
try:
|
||||
await self._query(query, **params)
|
||||
logger.debug(f"Deleted node with label '{entity_name_label}'")
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node labels to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
entity_name_label_source = source.strip('"')
|
||||
entity_name_label_target = target.strip('"')
|
||||
|
||||
query = """
|
||||
MATCH (source:`{src_label}`)-[r]->(target:`{tgt_label}`)
|
||||
DELETE r
|
||||
"""
|
||||
params = {
|
||||
"src_label": AGEStorage._encode_graph_label(entity_name_label_source),
|
||||
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target)
|
||||
}
|
||||
try:
|
||||
await self._query(query, **params)
|
||||
logger.debug(f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'")
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""Embed nodes using the specified algorithm
|
||||
|
||||
Args:
|
||||
algorithm: Name of the embedding algorithm
|
||||
|
||||
Returns:
|
||||
tuple: (embedding matrix, list of node identifiers)
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""Get all node labels in the database
|
||||
|
||||
Returns:
|
||||
["label1", "label2", ...] # Alphabetically sorted label list
|
||||
"""
|
||||
query = """
|
||||
MATCH (n)
|
||||
RETURN DISTINCT labels(n) AS node_labels
|
||||
"""
|
||||
results = await self._query(query)
|
||||
|
||||
all_labels = []
|
||||
for record in results:
|
||||
if record and "node_labels" in record:
|
||||
for label in record["node_labels"]:
|
||||
if label:
|
||||
# Decode label
|
||||
decoded_label = AGEStorage._decode_graph_label(label)
|
||||
all_labels.append(decoded_label)
|
||||
|
||||
# Remove duplicates and sort
|
||||
return sorted(list(set(all_labels)))
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified 'node_label'.
|
||||
Maximum number of nodes is constrained by the environment variable 'MAX_GRAPH_NODES' (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence (nodes containing the specified label string)
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Args:
|
||||
node_label: String to match in node labels (will match any node containing this string in its label)
|
||||
max_depth: Maximum depth of the graph. Defaults to 5.
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph: Complete connected subgraph for specified node
|
||||
"""
|
||||
max_graph_nodes = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
# Handle special case for "*" label
|
||||
if node_label == "*":
|
||||
# Query all nodes and sort by degree
|
||||
query = """
|
||||
MATCH (n)
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
WITH n, count(r) AS degree
|
||||
ORDER BY degree DESC
|
||||
LIMIT {max_nodes}
|
||||
RETURN n, degree
|
||||
"""
|
||||
params = {"max_nodes": max_graph_nodes}
|
||||
nodes_result = await self._query(query, **params)
|
||||
|
||||
# Add nodes to result
|
||||
node_ids = []
|
||||
for record in nodes_result:
|
||||
if "n" in record:
|
||||
node = record["n"]
|
||||
node_id = str(node.get("id", ""))
|
||||
if node_id not in seen_nodes:
|
||||
node_properties = {k: v for k, v in node.items()}
|
||||
node_label = node.get("label", "")
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node_label],
|
||||
properties=node_properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
node_ids.append(node_id)
|
||||
|
||||
# Query edges between these nodes
|
||||
if node_ids:
|
||||
edges_query = """
|
||||
MATCH (a)-[r]->(b)
|
||||
WHERE a.id IN {node_ids} AND b.id IN {node_ids}
|
||||
RETURN a, r, b
|
||||
"""
|
||||
edges_params = {"node_ids": node_ids}
|
||||
edges_result = await self._query(edges_query, **edges_params)
|
||||
|
||||
# Add edges to result
|
||||
for record in edges_result:
|
||||
if "r" in record and "a" in record and "b" in record:
|
||||
source = record["a"].get("id", "")
|
||||
target = record["b"].get("id", "")
|
||||
edge_id = f"{source}-{target}"
|
||||
if edge_id not in seen_edges:
|
||||
edge_properties = {k: v for k, v in record["r"].items()}
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=source,
|
||||
target=target,
|
||||
properties=edge_properties
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
else:
|
||||
# For specific label, use partial matching
|
||||
entity_name_label = node_label.strip('"')
|
||||
encoded_label = AGEStorage._encode_graph_label(entity_name_label)
|
||||
|
||||
# Find matching start nodes
|
||||
start_query = """
|
||||
MATCH (n:`{label}`)
|
||||
RETURN n
|
||||
"""
|
||||
start_params = {"label": encoded_label}
|
||||
start_nodes = await self._query(start_query, **start_params)
|
||||
|
||||
if not start_nodes:
|
||||
logger.warning(f"No nodes found with label '{entity_name_label}'!")
|
||||
return result
|
||||
|
||||
# Traverse graph from each start node
|
||||
for start_node_record in start_nodes:
|
||||
if "n" in start_node_record:
|
||||
start_node = start_node_record["n"]
|
||||
start_id = str(start_node.get("id", ""))
|
||||
|
||||
# Use BFS to traverse graph
|
||||
query = """
|
||||
MATCH (start:`{label}`)
|
||||
CALL {
|
||||
MATCH path = (start)-[*0..{max_depth}]->(n)
|
||||
RETURN nodes(path) AS path_nodes, relationships(path) AS path_rels
|
||||
}
|
||||
RETURN DISTINCT path_nodes, path_rels
|
||||
"""
|
||||
params = {"label": encoded_label, "max_depth": max_depth}
|
||||
results = await self._query(query, **params)
|
||||
|
||||
# Extract nodes and edges from results
|
||||
for record in results:
|
||||
if "path_nodes" in record:
|
||||
# Process nodes
|
||||
for node in record["path_nodes"]:
|
||||
node_id = str(node.get("id", ""))
|
||||
if node_id not in seen_nodes and len(seen_nodes) < max_graph_nodes:
|
||||
node_properties = {k: v for k, v in node.items()}
|
||||
node_label = node.get("label", "")
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node_label],
|
||||
properties=node_properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
if "path_rels" in record:
|
||||
# Process edges
|
||||
for rel in record["path_rels"]:
|
||||
source = str(rel.get("start_id", ""))
|
||||
target = str(rel.get("end_id", ""))
|
||||
edge_id = f"{source}-{target}"
|
||||
if edge_id not in seen_edges:
|
||||
edge_properties = {k: v for k, v in rel.items()}
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type=rel.get("label", "DIRECTED"),
|
||||
source=source,
|
||||
target=target,
|
||||
properties=edge_properties
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
return result
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
# AGES handles persistence automatically
|
||||
|
@@ -193,7 +193,37 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
||||
pass
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its ID.
|
||||
|
||||
Args:
|
||||
entity_name: The ID of the entity to delete
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Deleting entity with ID {entity_name} from {self.namespace}")
|
||||
self._collection.delete(ids=[entity_name])
|
||||
except Exception as e:
|
||||
logger.error(f"Error during entity deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity and its relations by ID.
|
||||
In vector DB context, this is equivalent to delete_entity.
|
||||
|
||||
Args:
|
||||
entity_name: The ID of the entity to delete
|
||||
"""
|
||||
await self.delete_entity(entity_name)
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||
self._collection.delete(ids=ids)
|
||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
raise
|
||||
|
@@ -16,7 +16,7 @@ from tenacity import (
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
from lightrag.utils import logger
|
||||
|
||||
from ..base import BaseGraphStorage
|
||||
@@ -396,17 +396,286 @@ class GremlinStorage(BaseGraphStorage):
|
||||
print("Implemented but never called.")
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified entity_name
|
||||
|
||||
Args:
|
||||
node_id: The entity_name of the node to delete
|
||||
"""
|
||||
entity_name = GremlinStorage._fix_name(node_id)
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name})
|
||||
.drop()
|
||||
"""
|
||||
try:
|
||||
await self._query(query)
|
||||
logger.debug(
|
||||
"{%s}: Deleted node with entity_name '%s'",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
entity_name
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Embed nodes using the specified algorithm.
|
||||
Currently, only node2vec is supported but never called.
|
||||
|
||||
Args:
|
||||
algorithm: The name of the embedding algorithm to use
|
||||
|
||||
Returns:
|
||||
A tuple of (embeddings, node_ids)
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the specified algorithm is not supported
|
||||
ValueError: If the algorithm is not supported
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Get all node entity_names in the graph
|
||||
Returns:
|
||||
[entity_name1, entity_name2, ...] # Alphabetically sorted entity_name list
|
||||
"""
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.values('entity_name')
|
||||
.dedup()
|
||||
.order()
|
||||
"""
|
||||
try:
|
||||
result = await self._query(query)
|
||||
labels = result if result else []
|
||||
logger.debug(
|
||||
"{%s}: Retrieved %d labels",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
len(labels)
|
||||
)
|
||||
return labels
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving labels: {str(e)}")
|
||||
return []
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
|
||||
Args:
|
||||
node_label: Entity name of the starting node
|
||||
max_depth: Maximum depth of the subgraph
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
# Get maximum number of graph nodes from environment variable, default is 1000
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
entity_name = GremlinStorage._fix_name(node_label)
|
||||
|
||||
# Handle special case for "*" label
|
||||
if node_label == "*":
|
||||
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.elementMap()
|
||||
"""
|
||||
nodes_result = await self._query(query)
|
||||
|
||||
# Add nodes to result
|
||||
for node_data in nodes_result:
|
||||
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
|
||||
if str(node_id) in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node with properties
|
||||
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
|
||||
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=str(node_id),
|
||||
labels=[str(node_id)],
|
||||
properties=node_properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(str(node_id))
|
||||
|
||||
# Get and add edges
|
||||
if nodes_result:
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.outE()
|
||||
.inV().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.path()
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
"""
|
||||
edges_result = await self._query(query)
|
||||
|
||||
for path in edges_result:
|
||||
if len(path) >= 3: # source -> edge -> target
|
||||
source = path[0]
|
||||
edge_data = path[1]
|
||||
target = path[2]
|
||||
|
||||
source_id = source.get('entity_name', str(source.get('id', '')))
|
||||
target_id = target.get('entity_name', str(target.get('id', '')))
|
||||
|
||||
edge_id = f"{source_id}-{target_id}"
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge with properties
|
||||
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=str(source_id),
|
||||
target=str(target_id),
|
||||
properties=edge_properties
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
else:
|
||||
# Search for specific node and get its neighborhood
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name})
|
||||
.repeat(__.both().simplePath().dedup())
|
||||
.times({max_depth})
|
||||
.emit()
|
||||
.dedup()
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.elementMap()
|
||||
"""
|
||||
nodes_result = await self._query(query)
|
||||
|
||||
# Add nodes to result
|
||||
for node_data in nodes_result:
|
||||
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
|
||||
if str(node_id) in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node with properties
|
||||
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
|
||||
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=str(node_id),
|
||||
labels=[str(node_id)],
|
||||
properties=node_properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(str(node_id))
|
||||
|
||||
# Get edges between the nodes in the result
|
||||
if nodes_result:
|
||||
node_ids = [n.get('entity_name', str(n.get('id', ''))) for n in nodes_result]
|
||||
node_ids_query = ", ".join([GremlinStorage._to_value_map(nid) for nid in node_ids])
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', within({node_ids_query}))
|
||||
.outE()
|
||||
.where(inV().has('graph', {self.graph_name})
|
||||
.has('entity_name', within({node_ids_query})))
|
||||
.path()
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
"""
|
||||
edges_result = await self._query(query)
|
||||
|
||||
for path in edges_result:
|
||||
if len(path) >= 3: # source -> edge -> target
|
||||
source = path[0]
|
||||
edge_data = path[1]
|
||||
target = path[2]
|
||||
|
||||
source_id = source.get('entity_name', str(source.get('id', '')))
|
||||
target_id = target.get('entity_name', str(target.get('id', '')))
|
||||
|
||||
edge_id = f"{source_id}-{target_id}"
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge with properties
|
||||
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=str(source_id),
|
||||
target=str(target_id),
|
||||
properties=edge_properties
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
"Subgraph query successful | Node count: %d | Edge count: %d",
|
||||
len(result.nodes),
|
||||
len(result.edges)
|
||||
)
|
||||
return result
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node entity_names to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
entity_name_source = GremlinStorage._fix_name(source)
|
||||
entity_name_target = GremlinStorage._fix_name(target)
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name_source})
|
||||
.outE()
|
||||
.where(inV().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name_target}))
|
||||
.drop()
|
||||
"""
|
||||
try:
|
||||
await self._query(query)
|
||||
logger.debug(
|
||||
"{%s}: Deleted edge from '%s' to '%s'",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
entity_name_source,
|
||||
entity_name_target
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
from typing import Any, final
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
from lightrag.utils import logger
|
||||
from lightrag.utils import logger, compute_mdhash_id
|
||||
from ..base import BaseVectorStorage
|
||||
import pipmaster as pm
|
||||
|
||||
@@ -124,7 +124,84 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
pass
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity from the vector database
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Compute entity ID from name
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
||||
|
||||
# Delete the entity from Milvus collection
|
||||
result = self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
pks=[entity_id]
|
||||
)
|
||||
|
||||
if result and result.get("delete_count", 0) > 0:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Search for relations where entity is either source or target
|
||||
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
|
||||
|
||||
# Find all relations involving this entity
|
||||
results = self._client.query(
|
||||
collection_name=self.namespace,
|
||||
filter=expr,
|
||||
output_fields=["id"]
|
||||
)
|
||||
|
||||
if not results or len(results) == 0:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
return
|
||||
|
||||
# Extract IDs of relations to delete
|
||||
relation_ids = [item["id"] for item in results]
|
||||
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
|
||||
|
||||
# Delete the relations
|
||||
if relation_ids:
|
||||
delete_result = self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
pks=relation_ids
|
||||
)
|
||||
|
||||
logger.debug(f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
# Delete vectors by IDs
|
||||
result = self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
pks=ids
|
||||
)
|
||||
|
||||
if result and result.get("delete_count", 0) > 0:
|
||||
logger.debug(f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}")
|
||||
else:
|
||||
logger.debug(f"No vectors were deleted from {self.namespace}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
@@ -15,7 +15,7 @@ from ..base import (
|
||||
DocStatusStorage,
|
||||
)
|
||||
from ..namespace import NameSpace, is_namespace
|
||||
from ..utils import logger
|
||||
from ..utils import logger, compute_mdhash_id
|
||||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
import pipmaster as pm
|
||||
|
||||
@@ -333,7 +333,7 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
Check if there's a direct single-hop edge from source_node_id to target_node_id.
|
||||
|
||||
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
|
||||
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
|
||||
"Look up zero expansions." Actually, for a direct edge check, we can do maxDepth=1
|
||||
and then see if the target node is in the "reachableNodes" at depth=0.
|
||||
|
||||
But typically for a direct edge, we might just do a find_one.
|
||||
@@ -795,6 +795,52 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]) -> None:
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node IDs to be deleted
|
||||
"""
|
||||
logger.info(f"Deleting {len(nodes)} nodes")
|
||||
if not nodes:
|
||||
return
|
||||
|
||||
# 1. Remove all edges referencing these nodes (remove from edges array of other nodes)
|
||||
await self.collection.update_many(
|
||||
{},
|
||||
{"$pull": {"edges": {"target": {"$in": nodes}}}}
|
||||
)
|
||||
|
||||
# 2. Delete the node documents
|
||||
await self.collection.delete_many({"_id": {"$in": nodes}})
|
||||
|
||||
logger.debug(f"Successfully deleted nodes: {nodes}")
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
logger.info(f"Deleting {len(edges)} edges")
|
||||
if not edges:
|
||||
return
|
||||
|
||||
update_tasks = []
|
||||
for source, target in edges:
|
||||
# Remove edge pointing to target from source node's edges array
|
||||
update_tasks.append(
|
||||
self.collection.update_one(
|
||||
{"_id": source},
|
||||
{"$pull": {"edges": {"target": target}}}
|
||||
)
|
||||
)
|
||||
|
||||
if update_tasks:
|
||||
await asyncio.gather(*update_tasks)
|
||||
|
||||
logger.debug(f"Successfully deleted edges: {edges}")
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
@@ -932,11 +978,66 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||
if not ids:
|
||||
return
|
||||
|
||||
try:
|
||||
result = await self._data.delete_many({"_id": {"$in": ids}})
|
||||
logger.debug(f"Successfully deleted {result.deleted_count} vectors from {self.namespace}")
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {str(e)}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
||||
|
||||
result = await self._data.delete_one({"_id": entity_id})
|
||||
if result.deleted_count > 0:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {str(e)}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Find relations where entity appears as source or target
|
||||
relations_cursor = self._data.find(
|
||||
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
|
||||
)
|
||||
relations = await relations_cursor.to_list(length=None)
|
||||
|
||||
if not relations:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
return
|
||||
|
||||
# Extract IDs of relations to delete
|
||||
relation_ids = [relation["_id"] for relation in relations]
|
||||
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
|
||||
|
||||
# Delete the relations
|
||||
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
|
||||
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {str(e)}")
|
||||
|
||||
|
||||
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
|
||||
|
@@ -8,7 +8,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
from ..base import (
|
||||
BaseGraphStorage,
|
||||
@@ -442,11 +442,55 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
||||
# Oracles handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_vectors"].format(
|
||||
ids=",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
raise
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_entity"]
|
||||
params = {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
raise
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations connected to an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_entity_relations"]
|
||||
params = {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(f"Successfully deleted relations for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
@final
|
||||
@@ -668,15 +712,206 @@ class OracleGraphStorage(BaseGraphStorage):
|
||||
return res
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node from the graph
|
||||
|
||||
Args:
|
||||
node_id: ID of the node to delete
|
||||
"""
|
||||
try:
|
||||
# First delete all relations connected to this node
|
||||
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
|
||||
params_relations = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||
await self.db.execute(delete_relations_sql, params_relations)
|
||||
|
||||
# Then delete the node itself
|
||||
delete_node_sql = SQL_TEMPLATES["delete_entity"]
|
||||
params_node = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||
await self.db.execute(delete_node_sql, params_node)
|
||||
|
||||
logger.info(f"Successfully deleted node {node_id} and all its relationships")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting node {node_id}: {e}")
|
||||
raise
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""Get all unique entity types (labels) in the graph
|
||||
|
||||
Returns:
|
||||
List of unique entity types/labels
|
||||
"""
|
||||
try:
|
||||
SQL = """
|
||||
SELECT DISTINCT entity_type
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY entity_type
|
||||
"""
|
||||
params = {"workspace": self.db.workspace}
|
||||
results = await self.db.query(SQL, params, multirows=True)
|
||||
|
||||
if results:
|
||||
labels = [row["entity_type"] for row in results]
|
||||
return labels
|
||||
else:
|
||||
return []
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving entity types: {e}")
|
||||
return []
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""Retrieve a connected subgraph starting from nodes matching the given label
|
||||
|
||||
Maximum number of nodes is constrained by MAX_GRAPH_NODES environment variable.
|
||||
Prioritizes nodes by:
|
||||
1. Nodes matching the specified label
|
||||
2. Nodes directly connected to matching nodes
|
||||
3. Node degree (number of connections)
|
||||
|
||||
Args:
|
||||
node_label: Label to match for starting nodes (use "*" for all nodes)
|
||||
max_depth: Maximum depth of traversal from starting nodes
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
|
||||
try:
|
||||
# Define maximum number of nodes to return
|
||||
max_graph_nodes = int(os.environ.get("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
if node_label == "*":
|
||||
# For "*" label, get all nodes up to the limit
|
||||
nodes_sql = """
|
||||
SELECT name, entity_type, description, source_chunk_id
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY id
|
||||
FETCH FIRST :limit ROWS ONLY
|
||||
"""
|
||||
nodes_params = {"workspace": self.db.workspace, "limit": max_graph_nodes}
|
||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||
else:
|
||||
# For specific label, find matching nodes and related nodes
|
||||
nodes_sql = """
|
||||
WITH matching_nodes AS (
|
||||
SELECT name
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
AND (name LIKE '%' || :node_label || '%' OR entity_type LIKE '%' || :node_label || '%')
|
||||
)
|
||||
SELECT n.name, n.entity_type, n.description, n.source_chunk_id,
|
||||
CASE
|
||||
WHEN n.name IN (SELECT name FROM matching_nodes) THEN 2
|
||||
WHEN EXISTS (
|
||||
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
|
||||
WHERE workspace = :workspace
|
||||
AND ((e.source_name = n.name AND e.target_name IN (SELECT name FROM matching_nodes))
|
||||
OR (e.target_name = n.name AND e.source_name IN (SELECT name FROM matching_nodes)))
|
||||
) THEN 1
|
||||
ELSE 0
|
||||
END AS priority,
|
||||
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
|
||||
WHERE workspace = :workspace
|
||||
AND (e.source_name = n.name OR e.target_name = n.name)) AS degree
|
||||
FROM LIGHTRAG_GRAPH_NODES n
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY priority DESC, degree DESC
|
||||
FETCH FIRST :limit ROWS ONLY
|
||||
"""
|
||||
nodes_params = {
|
||||
"workspace": self.db.workspace,
|
||||
"node_label": node_label,
|
||||
"limit": max_graph_nodes
|
||||
}
|
||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||
|
||||
if not nodes:
|
||||
logger.warning(f"No nodes found matching '{node_label}'")
|
||||
return result
|
||||
|
||||
# Create mapping of node IDs to be used to filter edges
|
||||
node_names = [node["name"] for node in nodes]
|
||||
|
||||
# Add nodes to result
|
||||
seen_nodes = set()
|
||||
for node in nodes:
|
||||
node_id = node["name"]
|
||||
if node_id in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node properties dictionary
|
||||
properties = {
|
||||
"entity_type": node["entity_type"],
|
||||
"description": node["description"] or "",
|
||||
"source_id": node["source_chunk_id"] or ""
|
||||
}
|
||||
|
||||
# Add node to result
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node["entity_type"]],
|
||||
properties=properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Get edges between these nodes
|
||||
edges_sql = """
|
||||
SELECT source_name, target_name, weight, keywords, description, source_chunk_id
|
||||
FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE workspace = :workspace
|
||||
AND source_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
||||
AND target_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
||||
ORDER BY id
|
||||
"""
|
||||
edges_params = {
|
||||
"workspace": self.db.workspace,
|
||||
"node_names": node_names
|
||||
}
|
||||
edges = await self.db.query(edges_sql, edges_params, multirows=True)
|
||||
|
||||
# Add edges to result
|
||||
seen_edges = set()
|
||||
for edge in edges:
|
||||
source = edge["source_name"]
|
||||
target = edge["target_name"]
|
||||
edge_id = f"{source}-{target}"
|
||||
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge properties dictionary
|
||||
properties = {
|
||||
"weight": edge["weight"] or 0.0,
|
||||
"keywords": edge["keywords"] or "",
|
||||
"description": edge["description"] or "",
|
||||
"source_id": edge["source_chunk_id"] or ""
|
||||
}
|
||||
|
||||
# Add edge to result
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="RELATED",
|
||||
source=source,
|
||||
target=target,
|
||||
properties=properties
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving knowledge graph: {e}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
N_T = {
|
||||
@@ -927,4 +1162,12 @@ SQL_TEMPLATES = {
|
||||
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
|
||||
)""",
|
||||
# SQL for deletion
|
||||
"delete_vectors": "DELETE FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace AND id IN ({ids})",
|
||||
"delete_entity": "DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace AND name=:entity_name",
|
||||
"delete_entity_relations": "DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace AND (source_name=:entity_name OR target_name=:entity_name)",
|
||||
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a)
|
||||
WHERE a.workspace=:workspace AND a.name=:node_id
|
||||
ACTION DELETE a)""",
|
||||
}
|
||||
|
@@ -7,7 +7,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
import sys
|
||||
from tenacity import (
|
||||
@@ -512,11 +512,66 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
# PG handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs from the storage.
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
logger.error(f"Unknown namespace for vector deletion: {self.namespace}")
|
||||
return
|
||||
|
||||
ids_list = ",".join([f"'{id}'" for id in ids])
|
||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
|
||||
|
||||
try:
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its name from the vector storage.
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Construct SQL to delete the entity
|
||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
|
||||
WHERE workspace=$1 AND entity_name=$2"""
|
||||
|
||||
await self.db.execute(
|
||||
delete_sql,
|
||||
{"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
)
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity.
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Delete relations where the entity is either the source or target
|
||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
|
||||
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
|
||||
|
||||
await self.db.execute(
|
||||
delete_sql,
|
||||
{"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
)
|
||||
logger.debug(f"Successfully deleted relations for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
|
||||
|
||||
|
||||
@final
|
||||
@@ -1086,20 +1141,192 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
print("Implemented but never called.")
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Delete a node from the graph.
|
||||
|
||||
Args:
|
||||
node_id (str): The ID of the node to delete.
|
||||
"""
|
||||
label = self._encode_graph_label(node_id.strip('"'))
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity {node_id: "%s"})
|
||||
DETACH DELETE n
|
||||
$$) AS (n agtype)""" % (self.graph_name, label)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during node deletion: {%s}", e)
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, node_ids: list[str]) -> None:
|
||||
"""
|
||||
Remove multiple nodes from the graph.
|
||||
|
||||
Args:
|
||||
node_ids (list[str]): A list of node IDs to remove.
|
||||
"""
|
||||
encoded_node_ids = [self._encode_graph_label(node_id.strip('"')) for node_id in node_ids]
|
||||
node_id_list = ", ".join([f'"{node_id}"' for node_id in encoded_node_ids])
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
WHERE n.node_id IN [%s]
|
||||
DETACH DELETE n
|
||||
$$) AS (n agtype)""" % (self.graph_name, node_id_list)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during node removal: {%s}", e)
|
||||
raise
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||
"""
|
||||
Remove multiple edges from the graph.
|
||||
|
||||
Args:
|
||||
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
|
||||
"""
|
||||
encoded_edges = [(self._encode_graph_label(src.strip('"')), self._encode_graph_label(tgt.strip('"'))) for src, tgt in edges]
|
||||
edge_list = ", ".join([f'["{src}", "{tgt}"]' for src, tgt in encoded_edges])
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (a:Entity)-[r]->(b:Entity)
|
||||
WHERE [a.node_id, b.node_id] IN [%s]
|
||||
DELETE r
|
||||
$$) AS (r agtype)""" % (self.graph_name, edge_list)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during edge removal: {%s}", e)
|
||||
raise
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all labels (node IDs) in the graph.
|
||||
|
||||
Returns:
|
||||
list[str]: A list of all labels in the graph.
|
||||
"""
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
RETURN DISTINCT n.node_id AS label
|
||||
$$) AS (label text)""" % self.graph_name
|
||||
|
||||
results = await self._query(query)
|
||||
labels = [self._decode_graph_label(result["label"]) for result in results]
|
||||
|
||||
return labels
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Generate node embeddings using the specified algorithm.
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
Args:
|
||||
algorithm (str): The name of the embedding algorithm to use.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray[Any, Any], list[str]]: A tuple containing the embeddings and the corresponding node IDs.
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Unsupported embedding algorithm: {algorithm}")
|
||||
|
||||
embed_func = self._node_embed_algorithms[algorithm]
|
||||
return await embed_func()
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a subgraph containing the specified node and its neighbors up to the specified depth.
|
||||
|
||||
Args:
|
||||
node_label (str): The label of the node to start from. If "*", the entire graph is returned.
|
||||
max_depth (int): The maximum depth to traverse from the starting node.
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph: The retrieved subgraph.
|
||||
"""
|
||||
MAX_GRAPH_NODES = 1000
|
||||
|
||||
if node_label == "*":
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
OPTIONAL MATCH (n)-[r]->(m:Entity)
|
||||
RETURN n, r, m
|
||||
LIMIT %d
|
||||
$$) AS (n agtype, r agtype, m agtype)""" % (self.graph_name, MAX_GRAPH_NODES)
|
||||
else:
|
||||
encoded_node_label = self._encode_graph_label(node_label.strip('"'))
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity {node_id: "%s"})
|
||||
OPTIONAL MATCH p = (n)-[*..%d]-(m)
|
||||
RETURN nodes(p) AS nodes, relationships(p) AS relationships
|
||||
LIMIT %d
|
||||
$$) AS (nodes agtype[], relationships agtype[])""" % (self.graph_name, encoded_node_label, max_depth, MAX_GRAPH_NODES)
|
||||
|
||||
results = await self._query(query)
|
||||
|
||||
nodes = set()
|
||||
edges = []
|
||||
|
||||
for result in results:
|
||||
if node_label == "*":
|
||||
if result["n"]:
|
||||
node = result["n"]
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["m"]:
|
||||
node = result["m"]
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["r"]:
|
||||
edge = result["r"]
|
||||
src_id = self._decode_graph_label(edge["start_id"])
|
||||
tgt_id = self._decode_graph_label(edge["end_id"])
|
||||
edges.append((src_id, tgt_id))
|
||||
else:
|
||||
if result["nodes"]:
|
||||
for node in result["nodes"]:
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["relationships"]:
|
||||
for edge in result["relationships"]:
|
||||
src_id = self._decode_graph_label(edge["start_id"])
|
||||
tgt_id = self._decode_graph_label(edge["end_id"])
|
||||
edges.append((src_id, tgt_id))
|
||||
|
||||
kg = KnowledgeGraph(
|
||||
nodes=[KnowledgeGraphNode(id=node_id) for node_id in nodes],
|
||||
edges=[KnowledgeGraphEdge(source=src, target=tgt) for src, tgt in edges],
|
||||
)
|
||||
|
||||
return kg
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all node labels in the graph
|
||||
Returns:
|
||||
[label1, label2, ...] # Alphabetically sorted label list
|
||||
"""
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
RETURN DISTINCT n.node_id AS label
|
||||
ORDER BY label
|
||||
$$) AS (label agtype)""" % (self.graph_name)
|
||||
|
||||
try:
|
||||
results = await self._query(query)
|
||||
labels = []
|
||||
for record in results:
|
||||
if record["label"]:
|
||||
labels.append(self._decode_graph_label(record["label"]))
|
||||
return labels
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting all labels: {str(e)}")
|
||||
return []
|
||||
|
||||
async def drop(self) -> None:
|
||||
"""Drop the storage"""
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any, final
|
||||
from typing import Any, final, List
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
import hashlib
|
||||
@@ -141,8 +141,91 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
# Qdrant handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: List[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
# Convert regular ids to Qdrant compatible ids
|
||||
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
||||
# Delete points from the collection
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=qdrant_ids,
|
||||
),
|
||||
wait=True
|
||||
)
|
||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Generate the entity ID
|
||||
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
|
||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
||||
|
||||
# Delete the entity point from the collection
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=[entity_id],
|
||||
),
|
||||
wait=True
|
||||
)
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Find relations where the entity is either source or target
|
||||
results = self._client.scroll(
|
||||
collection_name=self.namespace,
|
||||
scroll_filter=models.Filter(
|
||||
should=[
|
||||
models.FieldCondition(
|
||||
key="src_id",
|
||||
match=models.MatchValue(value=entity_name)
|
||||
),
|
||||
models.FieldCondition(
|
||||
key="tgt_id",
|
||||
match=models.MatchValue(value=entity_name)
|
||||
)
|
||||
]
|
||||
),
|
||||
with_payload=True,
|
||||
limit=1000 # Adjust as needed for your use case
|
||||
)
|
||||
|
||||
# Extract points that need to be deleted
|
||||
relation_points = results[0]
|
||||
ids_to_delete = [point.id for point in relation_points]
|
||||
|
||||
if ids_to_delete:
|
||||
# Delete the relations
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=ids_to_delete,
|
||||
),
|
||||
wait=True
|
||||
)
|
||||
logger.debug(f"Deleted {len(ids_to_delete)} relations for {entity_name}")
|
||||
else:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
@@ -9,7 +9,7 @@ if not pm.is_installed("redis"):
|
||||
|
||||
# aioredis is a depricated library, replaced with redis
|
||||
from redis.asyncio import Redis
|
||||
from lightrag.utils import logger
|
||||
from lightrag.utils import logger, compute_mdhash_id
|
||||
from lightrag.base import BaseKVStorage
|
||||
import json
|
||||
|
||||
@@ -64,3 +64,79 @@ class RedisKVStorage(BaseKVStorage):
|
||||
async def index_done_callback(self) -> None:
|
||||
# Redis handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete entries with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of entry IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
pipe = self._redis.pipeline()
|
||||
for id in ids:
|
||||
pipe.delete(f"{self.namespace}:{id}")
|
||||
|
||||
results = await pipe.execute()
|
||||
deleted_count = sum(results)
|
||||
logger.info(f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
"""Delete an entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
|
||||
try:
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
||||
|
||||
# Delete the entity
|
||||
result = await self._redis.delete(f"{self.namespace}:{entity_id}")
|
||||
|
||||
if result:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Get all keys in this namespace
|
||||
cursor = 0
|
||||
relation_keys = []
|
||||
pattern = f"{self.namespace}:*"
|
||||
|
||||
while True:
|
||||
cursor, keys = await self._redis.scan(cursor, match=pattern)
|
||||
|
||||
# For each key, get the value and check if it's related to entity_name
|
||||
for key in keys:
|
||||
value = await self._redis.get(key)
|
||||
if value:
|
||||
data = json.loads(value)
|
||||
# Check if this is a relation involving the entity
|
||||
if data.get("src_id") == entity_name or data.get("tgt_id") == entity_name:
|
||||
relation_keys.append(key)
|
||||
|
||||
# Exit loop when cursor returns to 0
|
||||
if cursor == 0:
|
||||
break
|
||||
|
||||
# Delete the relation keys
|
||||
if relation_keys:
|
||||
deleted = await self._redis.delete(*relation_keys)
|
||||
logger.debug(f"Deleted {deleted} relations for {entity_name}")
|
||||
else:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
@@ -5,7 +5,7 @@ from typing import Any, Union, final
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
|
||||
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
||||
@@ -566,15 +566,148 @@ class TiDBGraphStorage(BaseGraphStorage):
|
||||
pass
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Delete a node and all its related edges
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to delete
|
||||
"""
|
||||
# First delete all edges related to this node
|
||||
await self.db.execute(SQL_TEMPLATES["delete_node_edges"],
|
||||
{"name": node_id, "workspace": self.db.workspace})
|
||||
|
||||
# Then delete the node itself
|
||||
await self.db.execute(SQL_TEMPLATES["delete_node"],
|
||||
{"name": node_id, "workspace": self.db.workspace})
|
||||
|
||||
logger.debug(f"Node {node_id} and its related edges have been deleted from the graph")
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Get all entity types (labels) in the database
|
||||
|
||||
Returns:
|
||||
List of labels sorted alphabetically
|
||||
"""
|
||||
result = await self.db.query(
|
||||
SQL_TEMPLATES["get_all_labels"],
|
||||
{"workspace": self.db.workspace},
|
||||
multirows=True
|
||||
)
|
||||
|
||||
if not result:
|
||||
return []
|
||||
|
||||
# Extract all labels
|
||||
return [item["label"] for item in result]
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Get a connected subgraph of nodes matching the specified label
|
||||
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
|
||||
|
||||
Args:
|
||||
node_label: The node label to match
|
||||
max_depth: Maximum depth of the subgraph
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
# Get matching nodes
|
||||
if node_label == "*":
|
||||
# Handle special case, get all nodes
|
||||
node_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_all_nodes"],
|
||||
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
|
||||
multirows=True
|
||||
)
|
||||
else:
|
||||
# Get nodes matching the label
|
||||
label_pattern = f"%{node_label}%"
|
||||
node_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_matching_nodes"],
|
||||
{"workspace": self.db.workspace, "label_pattern": label_pattern},
|
||||
multirows=True
|
||||
)
|
||||
|
||||
if not node_results:
|
||||
logger.warning(f"No nodes found matching label {node_label}")
|
||||
return result
|
||||
|
||||
# Limit the number of returned nodes
|
||||
if len(node_results) > MAX_GRAPH_NODES:
|
||||
node_results = node_results[:MAX_GRAPH_NODES]
|
||||
|
||||
# Extract node names for edge query
|
||||
node_names = [node["name"] for node in node_results]
|
||||
node_names_str = ",".join([f"'{name}'" for name in node_names])
|
||||
|
||||
# Add nodes to result
|
||||
for node in node_results:
|
||||
node_properties = {k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]}
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node["name"],
|
||||
labels=[node["entity_type"]] if node.get("entity_type") else [node["name"]],
|
||||
properties=node_properties
|
||||
)
|
||||
)
|
||||
|
||||
# Get related edges
|
||||
edge_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
|
||||
{"workspace": self.db.workspace},
|
||||
multirows=True
|
||||
)
|
||||
|
||||
if edge_results:
|
||||
# Add edges to result
|
||||
for edge in edge_results:
|
||||
# Only include edges related to selected nodes
|
||||
if edge["source_name"] in node_names and edge["target_name"] in node_names:
|
||||
edge_id = f"{edge['source_name']}-{edge['target_name']}"
|
||||
edge_properties = {k: v for k, v in edge.items()
|
||||
if k not in ["id", "source_name", "target_name"]}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="RELATED",
|
||||
source=edge["source_name"],
|
||||
target=edge["target_name"],
|
||||
properties=edge_properties
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
return result
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node IDs to delete
|
||||
"""
|
||||
for node_id in nodes:
|
||||
await self.delete_node(node_id)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to delete, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
await self.db.execute(SQL_TEMPLATES["remove_multiple_edges"], {
|
||||
"source": source,
|
||||
"target": target,
|
||||
"workspace": self.db.workspace
|
||||
})
|
||||
|
||||
|
||||
N_T = {
|
||||
@@ -785,4 +918,39 @@ SQL_TEMPLATES = {
|
||||
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
|
||||
source_chunk_id = VALUES(source_chunk_id)
|
||||
""",
|
||||
"delete_node": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE name = :name AND workspace = :workspace
|
||||
""",
|
||||
"delete_node_edges": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
|
||||
""",
|
||||
"get_all_labels": """
|
||||
SELECT DISTINCT entity_type as label
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY entity_type
|
||||
""",
|
||||
"get_matching_nodes": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE name LIKE :label_pattern AND workspace = :workspace
|
||||
ORDER BY name
|
||||
""",
|
||||
"get_all_nodes": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY name
|
||||
LIMIT :max_nodes
|
||||
""",
|
||||
"get_related_edges": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name IN (:node_names) OR target_name IN (:node_names))
|
||||
AND workspace = :workspace
|
||||
""",
|
||||
"remove_multiple_edges": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name = :source AND target_name = :target)
|
||||
AND workspace = :workspace
|
||||
"""
|
||||
}
|
||||
|
@@ -1399,6 +1399,54 @@ class LightRAG:
|
||||
]
|
||||
)
|
||||
|
||||
def delete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||
"""Synchronously delete a relation between two entities.
|
||||
|
||||
Args:
|
||||
source_entity: Name of the source entity
|
||||
target_entity: Name of the target entity
|
||||
"""
|
||||
loop = always_get_an_event_loop()
|
||||
return loop.run_until_complete(self.adelete_by_relation(source_entity, target_entity))
|
||||
|
||||
async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||
"""Asynchronously delete a relation between two entities.
|
||||
|
||||
Args:
|
||||
source_entity: Name of the source entity
|
||||
target_entity: Name of the target entity
|
||||
"""
|
||||
try:
|
||||
# Check if the relation exists
|
||||
edge_exists = await self.chunk_entity_relation_graph.has_edge(source_entity, target_entity)
|
||||
if not edge_exists:
|
||||
logger.warning(f"Relation from '{source_entity}' to '{target_entity}' does not exist")
|
||||
return
|
||||
|
||||
# Delete relation from vector database
|
||||
relation_id = compute_mdhash_id(source_entity + target_entity, prefix="rel-")
|
||||
await self.relationships_vdb.delete([relation_id])
|
||||
|
||||
# Delete relation from knowledge graph
|
||||
await self.chunk_entity_relation_graph.remove_edges([(source_entity, target_entity)])
|
||||
|
||||
logger.info(f"Successfully deleted relation from '{source_entity}' to '{target_entity}'")
|
||||
await self._delete_relation_done()
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}")
|
||||
|
||||
async def _delete_relation_done(self) -> None:
|
||||
"""Callback after relation deletion is complete"""
|
||||
await asyncio.gather(
|
||||
*[
|
||||
cast(StorageNameSpace, storage_inst).index_done_callback()
|
||||
for storage_inst in [ # type: ignore
|
||||
self.relationships_vdb,
|
||||
self.chunk_entity_relation_graph,
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
def _get_content_summary(self, content: str, max_length: int = 100) -> str:
|
||||
"""Get summary of document content
|
||||
|
||||
|
Reference in New Issue
Block a user