update README.md

This commit is contained in:
LarFii
2024-10-16 17:45:49 +08:00
parent 83d2faca79
commit 3abb0358a6

View File

@@ -20,8 +20,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
</div>
## 🎉 News
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports Ollama models!
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-ollama-models)!
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-hugging-face-models)!
## Install
@@ -75,6 +75,42 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
```
### Open AI-like APIs
LightRAG also support Open AI-like chat/embeddings APIs:
```python
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar"
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
max_token_size=8192,
func=embedding_func
)
)
```
### Using Hugging Face Models
If you want to use Hugging Face models, you only need to set LightRAG as follows:
```python
@@ -98,6 +134,7 @@ rag = LightRAG(
),
)
```
### Using Ollama Models
If you want to use Ollama models, you only need to set LightRAG as follows:
```python
@@ -119,11 +156,13 @@ rag = LightRAG(
),
)
```
### Batch Insert
```python
# Batch Insert: Insert multiple texts at once
rag.insert(["TEXT1", "TEXT2",...])
```
### Incremental Insert
```python
@@ -207,6 +246,7 @@ Output your evaluation in the following JSON format:
}}
}}
```
### Overall Performance Table
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
@@ -233,6 +273,7 @@ Output your evaluation in the following JSON format:
## Reproduce
All the code can be found in the `./reproduce` directory.
### Step-0 Extract Unique Contexts
First, we need to extract unique contexts in the datasets.
```python
@@ -286,6 +327,7 @@ def extract_unique_contexts(input_directory, output_directory):
print("All files have been processed.")
```
### Step-1 Insert Contexts
For the extracted contexts, we insert them into the LightRAG system.
@@ -307,6 +349,7 @@ def insert_text(rag, file_path):
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
```
### Step-2 Generate Queries
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.