Merge branch 'drahnreb/add-custom-tokenizer'
This commit is contained in:
@@ -1090,7 +1090,8 @@ rag.clear_cache(modes=["local"])
|
||||
| **doc_status_storage** | `str` | Storage type for documents process status. Supported types: `JsonDocStatusStorage`,`PGDocStatusStorage`,`MongoDocStatusStorage` | `JsonDocStatusStorage` |
|
||||
| **chunk_token_size** | `int` | 拆分文档时每个块的最大令牌大小 | `1200` |
|
||||
| **chunk_overlap_token_size** | `int` | 拆分文档时两个块之间的重叠令牌大小 | `100` |
|
||||
| **tiktoken_model_name** | `str` | 用于计算令牌数的Tiktoken编码器的模型名称 | `gpt-4o-mini` |
|
||||
| **tokenizer** | `Tokenizer` | 用于将文本转换为 tokens(数字)以及使用遵循 TokenizerInterface 协议的 .encode() 和 .decode() 函数将 tokens 转换回文本的函数。 如果您不指定,它将使用默认的 Tiktoken tokenizer。 | `TiktokenTokenizer` |
|
||||
| **tiktoken_model_name** | `str` | 如果您使用的是默认的 Tiktoken tokenizer,那么这是要使用的特定 Tiktoken 模型的名称。如果您提供自己的 tokenizer,则忽略此设置。 | `gpt-4o-mini` |
|
||||
| **entity_extract_max_gleaning** | `int` | 实体提取过程中的循环次数,附加历史消息 | `1` |
|
||||
| **entity_summary_to_max_tokens** | `int` | 每个实体摘要的最大令牌大小 | `500` |
|
||||
| **node_embedding_algorithm** | `str` | 节点嵌入算法(当前未使用) | `node2vec` |
|
||||
|
@@ -1156,7 +1156,8 @@ Valid modes are:
|
||||
| **doc_status_storage** | `str` | Storage type for documents process status. Supported types: `JsonDocStatusStorage`,`PGDocStatusStorage`,`MongoDocStatusStorage` | `JsonDocStatusStorage` |
|
||||
| **chunk_token_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||
| **chunk_overlap_token_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||
| **tiktoken_model_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
||||
| **tokenizer** | `Tokenizer` | The function used to convert text into tokens (numbers) and back using .encode() and .decode() functions following `TokenizerInterface` protocol. If you don't specify one, it will use the default Tiktoken tokenizer. | `TiktokenTokenizer` |
|
||||
| **tiktoken_model_name** | `str` | If you're using the default Tiktoken tokenizer, this is the name of the specific Tiktoken model to use. This setting is ignored if you provide your own tokenizer. | `gpt-4o-mini` |
|
||||
| **entity_extract_max_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
|
||||
| **entity_summary_to_max_tokens** | `int` | Maximum token size for each entity summary | `500` |
|
||||
| **node_embedding_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
|
||||
|
230
examples/lightrag_gemini_demo_no_tiktoken.py
Normal file
230
examples/lightrag_gemini_demo_no_tiktoken.py
Normal file
@@ -0,0 +1,230 @@
|
||||
# pip install -q -U google-genai to use gemini as a client
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
import dataclasses
|
||||
from pathlib import Path
|
||||
import hashlib
|
||||
import numpy as np
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc, Tokenizer
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
import sentencepiece as spm
|
||||
import requests
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if os.path.exists(WORKING_DIR):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(WORKING_DIR)
|
||||
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
class GemmaTokenizer(Tokenizer):
|
||||
# adapted from google-cloud-aiplatform[tokenization]
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class _TokenizerConfig:
|
||||
tokenizer_model_url: str
|
||||
tokenizer_model_hash: str
|
||||
|
||||
_TOKENIZERS = {
|
||||
"google/gemma2": _TokenizerConfig(
|
||||
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/33b652c465537c6158f9a472ea5700e5e770ad3f/tokenizer/tokenizer.model",
|
||||
tokenizer_model_hash="61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2",
|
||||
),
|
||||
"google/gemma3": _TokenizerConfig(
|
||||
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/cb7c0152a369e43908e769eb09e1ce6043afe084/tokenizer/gemma3_cleaned_262144_v2.spiece.model",
|
||||
tokenizer_model_hash="1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c",
|
||||
),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self, model_name: str = "gemini-2.0-flash", tokenizer_dir: Optional[str] = None
|
||||
):
|
||||
# https://github.com/google/gemma_pytorch/tree/main/tokenizer
|
||||
if "1.5" in model_name or "1.0" in model_name:
|
||||
# up to gemini 1.5 gemma2 is a comparable local tokenizer
|
||||
# https://github.com/googleapis/python-aiplatform/blob/main/vertexai/tokenization/_tokenizer_loading.py
|
||||
tokenizer_name = "google/gemma2"
|
||||
else:
|
||||
# for gemini > 2.0 gemma3 was used
|
||||
tokenizer_name = "google/gemma3"
|
||||
|
||||
file_url = self._TOKENIZERS[tokenizer_name].tokenizer_model_url
|
||||
tokenizer_model_name = file_url.rsplit("/", 1)[1]
|
||||
expected_hash = self._TOKENIZERS[tokenizer_name].tokenizer_model_hash
|
||||
|
||||
tokenizer_dir = Path(tokenizer_dir)
|
||||
if tokenizer_dir.is_dir():
|
||||
file_path = tokenizer_dir / tokenizer_model_name
|
||||
model_data = self._maybe_load_from_cache(
|
||||
file_path=file_path, expected_hash=expected_hash
|
||||
)
|
||||
else:
|
||||
model_data = None
|
||||
if not model_data:
|
||||
model_data = self._load_from_url(
|
||||
file_url=file_url, expected_hash=expected_hash
|
||||
)
|
||||
self.save_tokenizer_to_cache(cache_path=file_path, model_data=model_data)
|
||||
|
||||
tokenizer = spm.SentencePieceProcessor()
|
||||
tokenizer.LoadFromSerializedProto(model_data)
|
||||
super().__init__(model_name=model_name, tokenizer=tokenizer)
|
||||
|
||||
def _is_valid_model(self, model_data: bytes, expected_hash: str) -> bool:
|
||||
"""Returns true if the content is valid by checking the hash."""
|
||||
return hashlib.sha256(model_data).hexdigest() == expected_hash
|
||||
|
||||
def _maybe_load_from_cache(self, file_path: Path, expected_hash: str) -> bytes:
|
||||
"""Loads the model data from the cache path."""
|
||||
if not file_path.is_file():
|
||||
return
|
||||
with open(file_path, "rb") as f:
|
||||
content = f.read()
|
||||
if self._is_valid_model(model_data=content, expected_hash=expected_hash):
|
||||
return content
|
||||
|
||||
# Cached file corrupted.
|
||||
self._maybe_remove_file(file_path)
|
||||
|
||||
def _load_from_url(self, file_url: str, expected_hash: str) -> bytes:
|
||||
"""Loads model bytes from the given file url."""
|
||||
resp = requests.get(file_url)
|
||||
resp.raise_for_status()
|
||||
content = resp.content
|
||||
|
||||
if not self._is_valid_model(model_data=content, expected_hash=expected_hash):
|
||||
actual_hash = hashlib.sha256(content).hexdigest()
|
||||
raise ValueError(
|
||||
f"Downloaded model file is corrupted."
|
||||
f" Expected hash {expected_hash}. Got file hash {actual_hash}."
|
||||
)
|
||||
return content
|
||||
|
||||
@staticmethod
|
||||
def save_tokenizer_to_cache(cache_path: Path, model_data: bytes) -> None:
|
||||
"""Saves the model data to the cache path."""
|
||||
try:
|
||||
if not cache_path.is_file():
|
||||
cache_dir = cache_path.parent
|
||||
cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
with open(cache_path, "wb") as f:
|
||||
f.write(model_data)
|
||||
except OSError:
|
||||
# Don't raise if we cannot write file.
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _maybe_remove_file(file_path: Path) -> None:
|
||||
"""Removes the file if exists."""
|
||||
if not file_path.is_file():
|
||||
return
|
||||
try:
|
||||
file_path.unlink()
|
||||
except OSError:
|
||||
# Don't raise if we cannot remove file.
|
||||
pass
|
||||
|
||||
# def encode(self, content: str) -> list[int]:
|
||||
# return self.tokenizer.encode(content)
|
||||
|
||||
# def decode(self, tokens: list[int]) -> str:
|
||||
# return self.tokenizer.decode(tokens)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
# 1. Initialize the GenAI Client with your Gemini API Key
|
||||
client = genai.Client(api_key=gemini_api_key)
|
||||
|
||||
# 2. Combine prompts: system prompt, history, and user prompt
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
combined_prompt = ""
|
||||
if system_prompt:
|
||||
combined_prompt += f"{system_prompt}\n"
|
||||
|
||||
for msg in history_messages:
|
||||
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
|
||||
combined_prompt += f"{msg['role']}: {msg['content']}\n"
|
||||
|
||||
# Finally, add the new user prompt
|
||||
combined_prompt += f"user: {prompt}"
|
||||
|
||||
# 3. Call the Gemini model
|
||||
response = client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=[combined_prompt],
|
||||
config=types.GenerateContentConfig(max_output_tokens=500, temperature=0.1),
|
||||
)
|
||||
|
||||
# 4. Return the response text
|
||||
return response.text
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
return embeddings
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
# tiktoken_model_name="gpt-4o-mini",
|
||||
tokenizer=GemmaTokenizer(
|
||||
tokenizer_dir=(Path(WORKING_DIR) / "vertexai_tokenizer_model"),
|
||||
model_name="gemini-2.0-flash",
|
||||
),
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
|
||||
rag.insert(text)
|
||||
|
||||
response = rag.query(
|
||||
query="What is the main theme of the story?",
|
||||
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -10,7 +10,7 @@ from fastapi.responses import StreamingResponse
|
||||
import asyncio
|
||||
from ascii_colors import trace_exception
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import encode_string_by_tiktoken
|
||||
from lightrag.utils import TiktokenTokenizer
|
||||
from lightrag.api.utils_api import ollama_server_infos, get_combined_auth_dependency
|
||||
from fastapi import Depends
|
||||
|
||||
@@ -97,7 +97,7 @@ class OllamaTagResponse(BaseModel):
|
||||
|
||||
def estimate_tokens(text: str) -> int:
|
||||
"""Estimate the number of tokens in text using tiktoken"""
|
||||
tokens = encode_string_by_tiktoken(text)
|
||||
tokens = TiktokenTokenizer().encode(text)
|
||||
return len(tokens)
|
||||
|
||||
|
||||
|
@@ -7,7 +7,18 @@ import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
from typing import Any, AsyncIterator, Callable, Iterator, cast, final, Literal
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterator,
|
||||
cast,
|
||||
final,
|
||||
Literal,
|
||||
Optional,
|
||||
List,
|
||||
Dict,
|
||||
)
|
||||
|
||||
from lightrag.kg import (
|
||||
STORAGES,
|
||||
@@ -41,11 +52,12 @@ from .operate import (
|
||||
)
|
||||
from .prompt import GRAPH_FIELD_SEP, PROMPTS
|
||||
from .utils import (
|
||||
Tokenizer,
|
||||
TiktokenTokenizer,
|
||||
EmbeddingFunc,
|
||||
always_get_an_event_loop,
|
||||
compute_mdhash_id,
|
||||
convert_response_to_json,
|
||||
encode_string_by_tiktoken,
|
||||
lazy_external_import,
|
||||
limit_async_func_call,
|
||||
get_content_summary,
|
||||
@@ -122,33 +134,38 @@ class LightRAG:
|
||||
)
|
||||
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
|
||||
|
||||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||||
"""Model name used for tokenization when chunking text."""
|
||||
tokenizer: Optional[Tokenizer] = field(default=None)
|
||||
"""
|
||||
A function that returns a Tokenizer instance.
|
||||
If None, and a `tiktoken_model_name` is provided, a TiktokenTokenizer will be created.
|
||||
If both are None, the default TiktokenTokenizer is used.
|
||||
"""
|
||||
|
||||
"""Maximum number of tokens used for summarizing extracted entities."""
|
||||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||||
"""Model name used for tokenization when chunking text with tiktoken. Defaults to `gpt-4o-mini`."""
|
||||
|
||||
chunking_func: Callable[
|
||||
[
|
||||
Tokenizer,
|
||||
str,
|
||||
str | None,
|
||||
Optional[str],
|
||||
bool,
|
||||
int,
|
||||
int,
|
||||
str,
|
||||
],
|
||||
list[dict[str, Any]],
|
||||
List[Dict[str, Any]],
|
||||
] = field(default_factory=lambda: chunking_by_token_size)
|
||||
"""
|
||||
Custom chunking function for splitting text into chunks before processing.
|
||||
|
||||
The function should take the following parameters:
|
||||
|
||||
- `tokenizer`: A Tokenizer instance to use for tokenization.
|
||||
- `content`: The text to be split into chunks.
|
||||
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
|
||||
- `split_by_character_only`: If True, the text is split only on the specified character.
|
||||
- `chunk_token_size`: The maximum number of tokens per chunk.
|
||||
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
|
||||
- `tiktoken_model_name`: The name of the tiktoken model to use for tokenization.
|
||||
|
||||
The function should return a list of dictionaries, where each dictionary contains the following keys:
|
||||
- `tokens`: The number of tokens in the chunk.
|
||||
@@ -310,7 +327,15 @@ class LightRAG:
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
# Init LLM
|
||||
# Init Tokenizer
|
||||
# Post-initialization hook to handle backward compatabile tokenizer initialization based on provided parameters
|
||||
if self.tokenizer is None:
|
||||
if self.tiktoken_model_name:
|
||||
self.tokenizer = TiktokenTokenizer(self.tiktoken_model_name)
|
||||
else:
|
||||
self.tokenizer = TiktokenTokenizer()
|
||||
|
||||
# Init Embedding
|
||||
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)( # type: ignore
|
||||
self.embedding_func
|
||||
)
|
||||
@@ -603,11 +628,7 @@ class LightRAG:
|
||||
inserting_chunks: dict[str, Any] = {}
|
||||
for index, chunk_text in enumerate(text_chunks):
|
||||
chunk_key = compute_mdhash_id(chunk_text, prefix="chunk-")
|
||||
tokens = len(
|
||||
encode_string_by_tiktoken(
|
||||
chunk_text, model_name=self.tiktoken_model_name
|
||||
)
|
||||
)
|
||||
tokens = len(self.tokenizer.encode(chunk_text))
|
||||
inserting_chunks[chunk_key] = {
|
||||
"content": chunk_text,
|
||||
"full_doc_id": doc_key,
|
||||
@@ -900,12 +921,12 @@ class LightRAG:
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -1133,11 +1154,7 @@ class LightRAG:
|
||||
for chunk_data in custom_kg.get("chunks", []):
|
||||
chunk_content = clean_text(chunk_data["content"])
|
||||
source_id = chunk_data["source_id"]
|
||||
tokens = len(
|
||||
encode_string_by_tiktoken(
|
||||
chunk_content, model_name=self.tiktoken_model_name
|
||||
)
|
||||
)
|
||||
tokens = len(self.tokenizer.encode(chunk_content))
|
||||
chunk_order_index = (
|
||||
0
|
||||
if "chunk_order_index" not in chunk_data.keys()
|
||||
|
@@ -12,8 +12,7 @@ from .utils import (
|
||||
logger,
|
||||
clean_str,
|
||||
compute_mdhash_id,
|
||||
decode_tokens_by_tiktoken,
|
||||
encode_string_by_tiktoken,
|
||||
Tokenizer,
|
||||
is_float_regex,
|
||||
list_of_list_to_csv,
|
||||
normalize_extracted_info,
|
||||
@@ -46,32 +45,31 @@ load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
|
||||
def chunking_by_token_size(
|
||||
tokenizer: Tokenizer,
|
||||
content: str,
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False,
|
||||
overlap_token_size: int = 128,
|
||||
max_token_size: int = 1024,
|
||||
tiktoken_model: str = "gpt-4o",
|
||||
) -> list[dict[str, Any]]:
|
||||
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
|
||||
tokens = tokenizer.encode(content)
|
||||
results: list[dict[str, Any]] = []
|
||||
if split_by_character:
|
||||
raw_chunks = content.split(split_by_character)
|
||||
new_chunks = []
|
||||
if split_by_character_only:
|
||||
for chunk in raw_chunks:
|
||||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||||
_tokens = tokenizer.encode(chunk)
|
||||
new_chunks.append((len(_tokens), chunk))
|
||||
else:
|
||||
for chunk in raw_chunks:
|
||||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||||
_tokens = tokenizer.encode(chunk)
|
||||
if len(_tokens) > max_token_size:
|
||||
for start in range(
|
||||
0, len(_tokens), max_token_size - overlap_token_size
|
||||
):
|
||||
chunk_content = decode_tokens_by_tiktoken(
|
||||
_tokens[start : start + max_token_size],
|
||||
model_name=tiktoken_model,
|
||||
chunk_content = tokenizer.decode(
|
||||
_tokens[start : start + max_token_size]
|
||||
)
|
||||
new_chunks.append(
|
||||
(min(max_token_size, len(_tokens) - start), chunk_content)
|
||||
@@ -90,9 +88,7 @@ def chunking_by_token_size(
|
||||
for index, start in enumerate(
|
||||
range(0, len(tokens), max_token_size - overlap_token_size)
|
||||
):
|
||||
chunk_content = decode_tokens_by_tiktoken(
|
||||
tokens[start : start + max_token_size], model_name=tiktoken_model
|
||||
)
|
||||
chunk_content = tokenizer.decode(tokens[start : start + max_token_size])
|
||||
results.append(
|
||||
{
|
||||
"tokens": min(max_token_size, len(tokens) - start),
|
||||
@@ -116,19 +112,19 @@ async def _handle_entity_relation_summary(
|
||||
If too long, use LLM to summarize.
|
||||
"""
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||||
summary_max_tokens = global_config["summary_to_max_tokens"]
|
||||
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||
tokens = tokenizer.encode(description)
|
||||
if len(tokens) < summary_max_tokens: # No need for summary
|
||||
return description
|
||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||
use_description = decode_tokens_by_tiktoken(
|
||||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||||
)
|
||||
use_description = tokenizer.decode(tokens[:llm_max_tokens])
|
||||
context_base = dict(
|
||||
entity_name=entity_or_relation_name,
|
||||
description_list=use_description.split(GRAPH_FIELD_SEP),
|
||||
@@ -865,7 +861,8 @@ async def kg_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
response = await use_model_func(
|
||||
@@ -987,7 +984,8 @@ async def extract_keywords_only(
|
||||
query=text, examples=examples, language=language, history=history_context
|
||||
)
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(kw_prompt))
|
||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 5. Call the LLM for keyword extraction
|
||||
@@ -1054,6 +1052,8 @@ async def mix_kg_vector_query(
|
||||
2. Retrieving relevant text chunks through vector similarity
|
||||
3. Combining both results for comprehensive answer generation
|
||||
"""
|
||||
# get tokenizer
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
# 1. Cache handling
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
@@ -1153,6 +1153,7 @@ async def mix_kg_vector_query(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
if not maybe_trun_chunks:
|
||||
@@ -1210,7 +1211,7 @@ async def mix_kg_vector_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 6. Generate response
|
||||
@@ -1373,17 +1374,24 @@ async def _get_node_data(
|
||||
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
# get entitytext chunk
|
||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
node_datas,
|
||||
query_param,
|
||||
text_chunks_db,
|
||||
knowledge_graph_inst,
|
||||
)
|
||||
use_relations = await _find_most_related_edges_from_entities(
|
||||
node_datas, query_param, knowledge_graph_inst
|
||||
node_datas,
|
||||
query_param,
|
||||
knowledge_graph_inst,
|
||||
)
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
len_node_datas = len(node_datas)
|
||||
node_datas = truncate_list_by_token_size(
|
||||
node_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_local_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
logger.debug(
|
||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||
@@ -1558,14 +1566,15 @@ async def _find_most_related_text_unit_from_entities(
|
||||
logger.warning("No valid text units found")
|
||||
return []
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
all_text_units = sorted(
|
||||
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
|
||||
)
|
||||
|
||||
all_text_units = truncate_list_by_token_size(
|
||||
all_text_units,
|
||||
key=lambda x: x["data"]["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1619,6 +1628,7 @@ async def _find_most_related_edges_from_entities(
|
||||
}
|
||||
all_edges_data.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = knowledge_graph_inst.global_config.get("tokenizer")
|
||||
all_edges_data = sorted(
|
||||
all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||||
)
|
||||
@@ -1626,6 +1636,7 @@ async def _find_most_related_edges_from_entities(
|
||||
all_edges_data,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_global_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1681,6 +1692,7 @@ async def _get_edge_data(
|
||||
}
|
||||
edge_datas.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
edge_datas = sorted(
|
||||
edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||||
)
|
||||
@@ -1688,13 +1700,19 @@ async def _get_edge_data(
|
||||
edge_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_global_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
use_entities, use_text_units = await asyncio.gather(
|
||||
_find_most_related_entities_from_relationships(
|
||||
edge_datas, query_param, knowledge_graph_inst
|
||||
edge_datas,
|
||||
query_param,
|
||||
knowledge_graph_inst,
|
||||
),
|
||||
_find_related_text_unit_from_relationships(
|
||||
edge_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
edge_datas,
|
||||
query_param,
|
||||
text_chunks_db,
|
||||
knowledge_graph_inst,
|
||||
),
|
||||
)
|
||||
logger.info(
|
||||
@@ -1804,11 +1822,13 @@ async def _find_most_related_entities_from_relationships(
|
||||
combined = {**node, "entity_name": entity_name, "rank": degree}
|
||||
node_datas.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = knowledge_graph_inst.global_config.get("tokenizer")
|
||||
len_node_datas = len(node_datas)
|
||||
node_datas = truncate_list_by_token_size(
|
||||
node_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_local_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
logger.debug(
|
||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||
@@ -1863,10 +1883,12 @@ async def _find_related_text_unit_from_relationships(
|
||||
logger.warning("No valid text chunks after filtering")
|
||||
return []
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
truncated_text_units = truncate_list_by_token_size(
|
||||
valid_text_units,
|
||||
key=lambda x: x["data"]["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1937,10 +1959,12 @@ async def naive_query(
|
||||
logger.warning("No valid chunks found after filtering")
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
if not maybe_trun_chunks:
|
||||
@@ -1978,7 +2002,7 @@ async def naive_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[naive_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
response = await use_model_func(
|
||||
@@ -2125,7 +2149,8 @@ async def kg_query_with_keywords(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 6. Generate response
|
||||
|
@@ -12,10 +12,9 @@ import re
|
||||
from dataclasses import dataclass
|
||||
from functools import wraps
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, TYPE_CHECKING
|
||||
from typing import Any, Protocol, Callable, TYPE_CHECKING, List
|
||||
import xml.etree.ElementTree as ET
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
from lightrag.prompt import PROMPTS
|
||||
from dotenv import load_dotenv
|
||||
|
||||
@@ -193,9 +192,6 @@ class UnlimitedSemaphore:
|
||||
pass
|
||||
|
||||
|
||||
ENCODER = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingFunc:
|
||||
embedding_dim: int
|
||||
@@ -311,20 +307,89 @@ def write_json(json_obj, file_name):
|
||||
json.dump(json_obj, f, indent=2, ensure_ascii=False)
|
||||
|
||||
|
||||
def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"):
|
||||
global ENCODER
|
||||
if ENCODER is None:
|
||||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||||
tokens = ENCODER.encode(content)
|
||||
return tokens
|
||||
class TokenizerInterface(Protocol):
|
||||
"""
|
||||
Defines the interface for a tokenizer, requiring encode and decode methods.
|
||||
"""
|
||||
|
||||
def encode(self, content: str) -> List[int]:
|
||||
"""Encodes a string into a list of tokens."""
|
||||
...
|
||||
|
||||
def decode(self, tokens: List[int]) -> str:
|
||||
"""Decodes a list of tokens into a string."""
|
||||
...
|
||||
|
||||
|
||||
def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"):
|
||||
global ENCODER
|
||||
if ENCODER is None:
|
||||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||||
content = ENCODER.decode(tokens)
|
||||
return content
|
||||
class Tokenizer:
|
||||
"""
|
||||
A wrapper around a tokenizer to provide a consistent interface for encoding and decoding.
|
||||
"""
|
||||
|
||||
def __init__(self, model_name: str, tokenizer: TokenizerInterface):
|
||||
"""
|
||||
Initializes the Tokenizer with a tokenizer model name and a tokenizer instance.
|
||||
|
||||
Args:
|
||||
model_name: The associated model name for the tokenizer.
|
||||
tokenizer: An instance of a class implementing the TokenizerInterface.
|
||||
"""
|
||||
self.model_name: str = model_name
|
||||
self.tokenizer: TokenizerInterface = tokenizer
|
||||
|
||||
def encode(self, content: str) -> List[int]:
|
||||
"""
|
||||
Encodes a string into a list of tokens using the underlying tokenizer.
|
||||
|
||||
Args:
|
||||
content: The string to encode.
|
||||
|
||||
Returns:
|
||||
A list of integer tokens.
|
||||
"""
|
||||
return self.tokenizer.encode(content)
|
||||
|
||||
def decode(self, tokens: List[int]) -> str:
|
||||
"""
|
||||
Decodes a list of tokens into a string using the underlying tokenizer.
|
||||
|
||||
Args:
|
||||
tokens: A list of integer tokens to decode.
|
||||
|
||||
Returns:
|
||||
The decoded string.
|
||||
"""
|
||||
return self.tokenizer.decode(tokens)
|
||||
|
||||
|
||||
class TiktokenTokenizer(Tokenizer):
|
||||
"""
|
||||
A Tokenizer implementation using the tiktoken library.
|
||||
"""
|
||||
|
||||
def __init__(self, model_name: str = "gpt-4o-mini"):
|
||||
"""
|
||||
Initializes the TiktokenTokenizer with a specified model name.
|
||||
|
||||
Args:
|
||||
model_name: The model name for the tiktoken tokenizer to use. Defaults to "gpt-4o-mini".
|
||||
|
||||
Raises:
|
||||
ImportError: If tiktoken is not installed.
|
||||
ValueError: If the model_name is invalid.
|
||||
"""
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"tiktoken is not installed. Please install it with `pip install tiktoken` or define custom `tokenizer_func`."
|
||||
)
|
||||
|
||||
try:
|
||||
tokenizer = tiktoken.encoding_for_model(model_name)
|
||||
super().__init__(model_name=model_name, tokenizer=tokenizer)
|
||||
except KeyError:
|
||||
raise ValueError(f"Invalid model_name: {model_name}.")
|
||||
|
||||
|
||||
def pack_user_ass_to_openai_messages(*args: str):
|
||||
@@ -361,14 +426,17 @@ def is_float_regex(value: str) -> bool:
|
||||
|
||||
|
||||
def truncate_list_by_token_size(
|
||||
list_data: list[Any], key: Callable[[Any], str], max_token_size: int
|
||||
list_data: list[Any],
|
||||
key: Callable[[Any], str],
|
||||
max_token_size: int,
|
||||
tokenizer: Tokenizer,
|
||||
) -> list[int]:
|
||||
"""Truncate a list of data by token size"""
|
||||
if max_token_size <= 0:
|
||||
return []
|
||||
tokens = 0
|
||||
for i, data in enumerate(list_data):
|
||||
tokens += len(encode_string_by_tiktoken(key(data)))
|
||||
tokens += len(tokenizer.encode(key(data)))
|
||||
if tokens > max_token_size:
|
||||
return list_data[:i]
|
||||
return list_data
|
||||
|
Reference in New Issue
Block a user