Merge branch 'drahnreb/add-custom-tokenizer'
This commit is contained in:
@@ -10,7 +10,7 @@ from fastapi.responses import StreamingResponse
|
||||
import asyncio
|
||||
from ascii_colors import trace_exception
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import encode_string_by_tiktoken
|
||||
from lightrag.utils import TiktokenTokenizer
|
||||
from lightrag.api.utils_api import ollama_server_infos, get_combined_auth_dependency
|
||||
from fastapi import Depends
|
||||
|
||||
@@ -97,7 +97,7 @@ class OllamaTagResponse(BaseModel):
|
||||
|
||||
def estimate_tokens(text: str) -> int:
|
||||
"""Estimate the number of tokens in text using tiktoken"""
|
||||
tokens = encode_string_by_tiktoken(text)
|
||||
tokens = TiktokenTokenizer().encode(text)
|
||||
return len(tokens)
|
||||
|
||||
|
||||
|
@@ -7,7 +7,18 @@ import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
from typing import Any, AsyncIterator, Callable, Iterator, cast, final, Literal
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterator,
|
||||
cast,
|
||||
final,
|
||||
Literal,
|
||||
Optional,
|
||||
List,
|
||||
Dict,
|
||||
)
|
||||
|
||||
from lightrag.kg import (
|
||||
STORAGES,
|
||||
@@ -41,11 +52,12 @@ from .operate import (
|
||||
)
|
||||
from .prompt import GRAPH_FIELD_SEP, PROMPTS
|
||||
from .utils import (
|
||||
Tokenizer,
|
||||
TiktokenTokenizer,
|
||||
EmbeddingFunc,
|
||||
always_get_an_event_loop,
|
||||
compute_mdhash_id,
|
||||
convert_response_to_json,
|
||||
encode_string_by_tiktoken,
|
||||
lazy_external_import,
|
||||
limit_async_func_call,
|
||||
get_content_summary,
|
||||
@@ -122,33 +134,38 @@ class LightRAG:
|
||||
)
|
||||
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
|
||||
|
||||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||||
"""Model name used for tokenization when chunking text."""
|
||||
tokenizer: Optional[Tokenizer] = field(default=None)
|
||||
"""
|
||||
A function that returns a Tokenizer instance.
|
||||
If None, and a `tiktoken_model_name` is provided, a TiktokenTokenizer will be created.
|
||||
If both are None, the default TiktokenTokenizer is used.
|
||||
"""
|
||||
|
||||
"""Maximum number of tokens used for summarizing extracted entities."""
|
||||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||||
"""Model name used for tokenization when chunking text with tiktoken. Defaults to `gpt-4o-mini`."""
|
||||
|
||||
chunking_func: Callable[
|
||||
[
|
||||
Tokenizer,
|
||||
str,
|
||||
str | None,
|
||||
Optional[str],
|
||||
bool,
|
||||
int,
|
||||
int,
|
||||
str,
|
||||
],
|
||||
list[dict[str, Any]],
|
||||
List[Dict[str, Any]],
|
||||
] = field(default_factory=lambda: chunking_by_token_size)
|
||||
"""
|
||||
Custom chunking function for splitting text into chunks before processing.
|
||||
|
||||
The function should take the following parameters:
|
||||
|
||||
- `tokenizer`: A Tokenizer instance to use for tokenization.
|
||||
- `content`: The text to be split into chunks.
|
||||
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
|
||||
- `split_by_character_only`: If True, the text is split only on the specified character.
|
||||
- `chunk_token_size`: The maximum number of tokens per chunk.
|
||||
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
|
||||
- `tiktoken_model_name`: The name of the tiktoken model to use for tokenization.
|
||||
|
||||
The function should return a list of dictionaries, where each dictionary contains the following keys:
|
||||
- `tokens`: The number of tokens in the chunk.
|
||||
@@ -310,7 +327,15 @@ class LightRAG:
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
# Init LLM
|
||||
# Init Tokenizer
|
||||
# Post-initialization hook to handle backward compatabile tokenizer initialization based on provided parameters
|
||||
if self.tokenizer is None:
|
||||
if self.tiktoken_model_name:
|
||||
self.tokenizer = TiktokenTokenizer(self.tiktoken_model_name)
|
||||
else:
|
||||
self.tokenizer = TiktokenTokenizer()
|
||||
|
||||
# Init Embedding
|
||||
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)( # type: ignore
|
||||
self.embedding_func
|
||||
)
|
||||
@@ -603,11 +628,7 @@ class LightRAG:
|
||||
inserting_chunks: dict[str, Any] = {}
|
||||
for index, chunk_text in enumerate(text_chunks):
|
||||
chunk_key = compute_mdhash_id(chunk_text, prefix="chunk-")
|
||||
tokens = len(
|
||||
encode_string_by_tiktoken(
|
||||
chunk_text, model_name=self.tiktoken_model_name
|
||||
)
|
||||
)
|
||||
tokens = len(self.tokenizer.encode(chunk_text))
|
||||
inserting_chunks[chunk_key] = {
|
||||
"content": chunk_text,
|
||||
"full_doc_id": doc_key,
|
||||
@@ -900,12 +921,12 @@ class LightRAG:
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -1133,11 +1154,7 @@ class LightRAG:
|
||||
for chunk_data in custom_kg.get("chunks", []):
|
||||
chunk_content = clean_text(chunk_data["content"])
|
||||
source_id = chunk_data["source_id"]
|
||||
tokens = len(
|
||||
encode_string_by_tiktoken(
|
||||
chunk_content, model_name=self.tiktoken_model_name
|
||||
)
|
||||
)
|
||||
tokens = len(self.tokenizer.encode(chunk_content))
|
||||
chunk_order_index = (
|
||||
0
|
||||
if "chunk_order_index" not in chunk_data.keys()
|
||||
|
@@ -12,8 +12,7 @@ from .utils import (
|
||||
logger,
|
||||
clean_str,
|
||||
compute_mdhash_id,
|
||||
decode_tokens_by_tiktoken,
|
||||
encode_string_by_tiktoken,
|
||||
Tokenizer,
|
||||
is_float_regex,
|
||||
list_of_list_to_csv,
|
||||
normalize_extracted_info,
|
||||
@@ -46,32 +45,31 @@ load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
|
||||
def chunking_by_token_size(
|
||||
tokenizer: Tokenizer,
|
||||
content: str,
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False,
|
||||
overlap_token_size: int = 128,
|
||||
max_token_size: int = 1024,
|
||||
tiktoken_model: str = "gpt-4o",
|
||||
) -> list[dict[str, Any]]:
|
||||
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
|
||||
tokens = tokenizer.encode(content)
|
||||
results: list[dict[str, Any]] = []
|
||||
if split_by_character:
|
||||
raw_chunks = content.split(split_by_character)
|
||||
new_chunks = []
|
||||
if split_by_character_only:
|
||||
for chunk in raw_chunks:
|
||||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||||
_tokens = tokenizer.encode(chunk)
|
||||
new_chunks.append((len(_tokens), chunk))
|
||||
else:
|
||||
for chunk in raw_chunks:
|
||||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||||
_tokens = tokenizer.encode(chunk)
|
||||
if len(_tokens) > max_token_size:
|
||||
for start in range(
|
||||
0, len(_tokens), max_token_size - overlap_token_size
|
||||
):
|
||||
chunk_content = decode_tokens_by_tiktoken(
|
||||
_tokens[start : start + max_token_size],
|
||||
model_name=tiktoken_model,
|
||||
chunk_content = tokenizer.decode(
|
||||
_tokens[start : start + max_token_size]
|
||||
)
|
||||
new_chunks.append(
|
||||
(min(max_token_size, len(_tokens) - start), chunk_content)
|
||||
@@ -90,9 +88,7 @@ def chunking_by_token_size(
|
||||
for index, start in enumerate(
|
||||
range(0, len(tokens), max_token_size - overlap_token_size)
|
||||
):
|
||||
chunk_content = decode_tokens_by_tiktoken(
|
||||
tokens[start : start + max_token_size], model_name=tiktoken_model
|
||||
)
|
||||
chunk_content = tokenizer.decode(tokens[start : start + max_token_size])
|
||||
results.append(
|
||||
{
|
||||
"tokens": min(max_token_size, len(tokens) - start),
|
||||
@@ -116,19 +112,19 @@ async def _handle_entity_relation_summary(
|
||||
If too long, use LLM to summarize.
|
||||
"""
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||||
summary_max_tokens = global_config["summary_to_max_tokens"]
|
||||
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||
tokens = tokenizer.encode(description)
|
||||
if len(tokens) < summary_max_tokens: # No need for summary
|
||||
return description
|
||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||
use_description = decode_tokens_by_tiktoken(
|
||||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||||
)
|
||||
use_description = tokenizer.decode(tokens[:llm_max_tokens])
|
||||
context_base = dict(
|
||||
entity_name=entity_or_relation_name,
|
||||
description_list=use_description.split(GRAPH_FIELD_SEP),
|
||||
@@ -865,7 +861,8 @@ async def kg_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
response = await use_model_func(
|
||||
@@ -987,7 +984,8 @@ async def extract_keywords_only(
|
||||
query=text, examples=examples, language=language, history=history_context
|
||||
)
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(kw_prompt))
|
||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 5. Call the LLM for keyword extraction
|
||||
@@ -1054,6 +1052,8 @@ async def mix_kg_vector_query(
|
||||
2. Retrieving relevant text chunks through vector similarity
|
||||
3. Combining both results for comprehensive answer generation
|
||||
"""
|
||||
# get tokenizer
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
# 1. Cache handling
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
@@ -1153,6 +1153,7 @@ async def mix_kg_vector_query(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
if not maybe_trun_chunks:
|
||||
@@ -1210,7 +1211,7 @@ async def mix_kg_vector_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 6. Generate response
|
||||
@@ -1373,17 +1374,24 @@ async def _get_node_data(
|
||||
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
# get entitytext chunk
|
||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
node_datas,
|
||||
query_param,
|
||||
text_chunks_db,
|
||||
knowledge_graph_inst,
|
||||
)
|
||||
use_relations = await _find_most_related_edges_from_entities(
|
||||
node_datas, query_param, knowledge_graph_inst
|
||||
node_datas,
|
||||
query_param,
|
||||
knowledge_graph_inst,
|
||||
)
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
len_node_datas = len(node_datas)
|
||||
node_datas = truncate_list_by_token_size(
|
||||
node_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_local_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
logger.debug(
|
||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||
@@ -1558,14 +1566,15 @@ async def _find_most_related_text_unit_from_entities(
|
||||
logger.warning("No valid text units found")
|
||||
return []
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
all_text_units = sorted(
|
||||
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
|
||||
)
|
||||
|
||||
all_text_units = truncate_list_by_token_size(
|
||||
all_text_units,
|
||||
key=lambda x: x["data"]["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1619,6 +1628,7 @@ async def _find_most_related_edges_from_entities(
|
||||
}
|
||||
all_edges_data.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = knowledge_graph_inst.global_config.get("tokenizer")
|
||||
all_edges_data = sorted(
|
||||
all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||||
)
|
||||
@@ -1626,6 +1636,7 @@ async def _find_most_related_edges_from_entities(
|
||||
all_edges_data,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_global_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1681,6 +1692,7 @@ async def _get_edge_data(
|
||||
}
|
||||
edge_datas.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
edge_datas = sorted(
|
||||
edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||||
)
|
||||
@@ -1688,13 +1700,19 @@ async def _get_edge_data(
|
||||
edge_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_global_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
use_entities, use_text_units = await asyncio.gather(
|
||||
_find_most_related_entities_from_relationships(
|
||||
edge_datas, query_param, knowledge_graph_inst
|
||||
edge_datas,
|
||||
query_param,
|
||||
knowledge_graph_inst,
|
||||
),
|
||||
_find_related_text_unit_from_relationships(
|
||||
edge_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
edge_datas,
|
||||
query_param,
|
||||
text_chunks_db,
|
||||
knowledge_graph_inst,
|
||||
),
|
||||
)
|
||||
logger.info(
|
||||
@@ -1804,11 +1822,13 @@ async def _find_most_related_entities_from_relationships(
|
||||
combined = {**node, "entity_name": entity_name, "rank": degree}
|
||||
node_datas.append(combined)
|
||||
|
||||
tokenizer: Tokenizer = knowledge_graph_inst.global_config.get("tokenizer")
|
||||
len_node_datas = len(node_datas)
|
||||
node_datas = truncate_list_by_token_size(
|
||||
node_datas,
|
||||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||||
max_token_size=query_param.max_token_for_local_context,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
logger.debug(
|
||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||
@@ -1863,10 +1883,12 @@ async def _find_related_text_unit_from_relationships(
|
||||
logger.warning("No valid text chunks after filtering")
|
||||
return []
|
||||
|
||||
tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
|
||||
truncated_text_units = truncate_list_by_token_size(
|
||||
valid_text_units,
|
||||
key=lambda x: x["data"]["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
@@ -1937,10 +1959,12 @@ async def naive_query(
|
||||
logger.warning("No valid chunks found after filtering")
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
if not maybe_trun_chunks:
|
||||
@@ -1978,7 +2002,7 @@ async def naive_query(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[naive_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
response = await use_model_func(
|
||||
@@ -2125,7 +2149,8 @@ async def kg_query_with_keywords(
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
len_of_prompts = len(tokenizer.encode(query + sys_prompt))
|
||||
logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 6. Generate response
|
||||
|
@@ -12,10 +12,9 @@ import re
|
||||
from dataclasses import dataclass
|
||||
from functools import wraps
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, TYPE_CHECKING
|
||||
from typing import Any, Protocol, Callable, TYPE_CHECKING, List
|
||||
import xml.etree.ElementTree as ET
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
from lightrag.prompt import PROMPTS
|
||||
from dotenv import load_dotenv
|
||||
|
||||
@@ -193,9 +192,6 @@ class UnlimitedSemaphore:
|
||||
pass
|
||||
|
||||
|
||||
ENCODER = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingFunc:
|
||||
embedding_dim: int
|
||||
@@ -311,20 +307,89 @@ def write_json(json_obj, file_name):
|
||||
json.dump(json_obj, f, indent=2, ensure_ascii=False)
|
||||
|
||||
|
||||
def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"):
|
||||
global ENCODER
|
||||
if ENCODER is None:
|
||||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||||
tokens = ENCODER.encode(content)
|
||||
return tokens
|
||||
class TokenizerInterface(Protocol):
|
||||
"""
|
||||
Defines the interface for a tokenizer, requiring encode and decode methods.
|
||||
"""
|
||||
|
||||
def encode(self, content: str) -> List[int]:
|
||||
"""Encodes a string into a list of tokens."""
|
||||
...
|
||||
|
||||
def decode(self, tokens: List[int]) -> str:
|
||||
"""Decodes a list of tokens into a string."""
|
||||
...
|
||||
|
||||
|
||||
def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"):
|
||||
global ENCODER
|
||||
if ENCODER is None:
|
||||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||||
content = ENCODER.decode(tokens)
|
||||
return content
|
||||
class Tokenizer:
|
||||
"""
|
||||
A wrapper around a tokenizer to provide a consistent interface for encoding and decoding.
|
||||
"""
|
||||
|
||||
def __init__(self, model_name: str, tokenizer: TokenizerInterface):
|
||||
"""
|
||||
Initializes the Tokenizer with a tokenizer model name and a tokenizer instance.
|
||||
|
||||
Args:
|
||||
model_name: The associated model name for the tokenizer.
|
||||
tokenizer: An instance of a class implementing the TokenizerInterface.
|
||||
"""
|
||||
self.model_name: str = model_name
|
||||
self.tokenizer: TokenizerInterface = tokenizer
|
||||
|
||||
def encode(self, content: str) -> List[int]:
|
||||
"""
|
||||
Encodes a string into a list of tokens using the underlying tokenizer.
|
||||
|
||||
Args:
|
||||
content: The string to encode.
|
||||
|
||||
Returns:
|
||||
A list of integer tokens.
|
||||
"""
|
||||
return self.tokenizer.encode(content)
|
||||
|
||||
def decode(self, tokens: List[int]) -> str:
|
||||
"""
|
||||
Decodes a list of tokens into a string using the underlying tokenizer.
|
||||
|
||||
Args:
|
||||
tokens: A list of integer tokens to decode.
|
||||
|
||||
Returns:
|
||||
The decoded string.
|
||||
"""
|
||||
return self.tokenizer.decode(tokens)
|
||||
|
||||
|
||||
class TiktokenTokenizer(Tokenizer):
|
||||
"""
|
||||
A Tokenizer implementation using the tiktoken library.
|
||||
"""
|
||||
|
||||
def __init__(self, model_name: str = "gpt-4o-mini"):
|
||||
"""
|
||||
Initializes the TiktokenTokenizer with a specified model name.
|
||||
|
||||
Args:
|
||||
model_name: The model name for the tiktoken tokenizer to use. Defaults to "gpt-4o-mini".
|
||||
|
||||
Raises:
|
||||
ImportError: If tiktoken is not installed.
|
||||
ValueError: If the model_name is invalid.
|
||||
"""
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"tiktoken is not installed. Please install it with `pip install tiktoken` or define custom `tokenizer_func`."
|
||||
)
|
||||
|
||||
try:
|
||||
tokenizer = tiktoken.encoding_for_model(model_name)
|
||||
super().__init__(model_name=model_name, tokenizer=tokenizer)
|
||||
except KeyError:
|
||||
raise ValueError(f"Invalid model_name: {model_name}.")
|
||||
|
||||
|
||||
def pack_user_ass_to_openai_messages(*args: str):
|
||||
@@ -361,14 +426,17 @@ def is_float_regex(value: str) -> bool:
|
||||
|
||||
|
||||
def truncate_list_by_token_size(
|
||||
list_data: list[Any], key: Callable[[Any], str], max_token_size: int
|
||||
list_data: list[Any],
|
||||
key: Callable[[Any], str],
|
||||
max_token_size: int,
|
||||
tokenizer: Tokenizer,
|
||||
) -> list[int]:
|
||||
"""Truncate a list of data by token size"""
|
||||
if max_token_size <= 0:
|
||||
return []
|
||||
tokens = 0
|
||||
for i, data in enumerate(list_data):
|
||||
tokens += len(encode_string_by_tiktoken(key(data)))
|
||||
tokens += len(tokenizer.encode(key(data)))
|
||||
if tokens > max_token_size:
|
||||
return list_data[:i]
|
||||
return list_data
|
||||
|
Reference in New Issue
Block a user