Merge branch 'main' into pkaushal/vectordb-chroma

This commit is contained in:
zrguo
2024-12-11 14:21:36 +08:00
committed by GitHub
7 changed files with 77 additions and 27 deletions

View File

@@ -594,7 +594,7 @@ if __name__ == "__main__":
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database (currently not used) | |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"]}`: sets example limit and output language | `example_number: all examples, language: English` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |

View File

@@ -50,16 +50,17 @@ from .storage import (
def lazy_external_import(module_name: str, class_name: str):
"""Lazily import a class from an external module based on the package of the caller."""
# Get the caller's module and package
import inspect
caller_frame = inspect.currentframe().f_back
module = inspect.getmodule(caller_frame)
package = module.__package__ if module else None
def import_class(*args, **kwargs):
import inspect
import importlib
# Get the caller's module and package
caller_frame = inspect.currentframe().f_back
module = inspect.getmodule(caller_frame)
package = module.__package__ if module else None
# Import the module using importlib with package context
# Import the module using importlib
module = importlib.import_module(module_name, package=package)
# Get the class from the module and instantiate it

View File

@@ -30,6 +30,7 @@ from .utils import (
wrap_embedding_func_with_attrs,
locate_json_string_body_from_string,
safe_unicode_decode,
logger,
)
import sys
@@ -63,12 +64,18 @@ async def openai_complete_if_cache(
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
kwargs.pop("hashing_kv", None)
kwargs.pop("keyword_extraction", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
# 添加日志输出
logger.debug("===== Query Input to LLM =====")
logger.debug(f"Query: {prompt}")
logger.debug(f"System prompt: {system_prompt}")
logger.debug("Full context:")
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs

View File

@@ -260,6 +260,9 @@ async def extract_entities(
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
entity_types = global_config["addon_params"].get(
"entity_types", PROMPTS["DEFAULT_ENTITY_TYPES"]
)
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["entity_extraction_examples"]):
examples = "\n".join(
@@ -272,7 +275,7 @@ async def extract_entities(
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
entity_types=",".join(entity_types),
language=language,
)
# add example's format
@@ -283,7 +286,7 @@ async def extract_entities(
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
entity_types=",".join(entity_types),
examples=examples,
language=language,
)
@@ -412,15 +415,17 @@ async def extract_entities(
):
all_relationships_data.append(await result)
if not len(all_entities_data):
logger.warning("Didn't extract any entities, maybe your LLM is not working")
return None
if not len(all_relationships_data):
if not len(all_entities_data) and not len(all_relationships_data):
logger.warning(
"Didn't extract any relationships, maybe your LLM is not working"
"Didn't extract any entities and relationships, maybe your LLM is not working"
)
return None
if not len(all_entities_data):
logger.warning("Didn't extract any entities")
if not len(all_relationships_data):
logger.warning("Didn't extract any relationships")
if entity_vdb is not None:
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
@@ -630,6 +635,13 @@ async def _build_query_context(
text_chunks_db,
query_param,
)
if (
hl_entities_context == ""
and hl_relations_context == ""
and hl_text_units_context == ""
):
logger.warn("No high level context found. Switching to local mode.")
query_param.mode = "local"
if query_param.mode == "hybrid":
entities_context, relations_context, text_units_context = combine_contexts(
[hl_entities_context, ll_entities_context],
@@ -865,7 +877,7 @@ async def _get_edge_data(
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
if not len(results):
return None
return "", "", ""
edge_datas = await asyncio.gather(
*[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results]

View File

@@ -8,7 +8,7 @@ PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
PROMPTS["process_tickers"] = ["", "", "", "", "", "", "", "", "", ""]
PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event"]
PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event", "category"]
PROMPTS["entity_extraction"] = """-Goal-
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
@@ -268,14 +268,19 @@ PROMPTS[
Question 1: {original_prompt}
Question 2: {cached_prompt}
Please evaluate:
Please evaluate the following two points and provide a similarity score between 0 and 1 directly:
1. Whether these two questions are semantically similar
2. Whether the answer to Question 2 can be used to answer Question 1
Please provide a similarity score between 0 and 1, where:
0: Completely unrelated or answer cannot be reused
Similarity score criteria:
0: Completely unrelated or answer cannot be reused, including but not limited to:
- The questions have different topics
- The locations mentioned in the questions are different
- The times mentioned in the questions are different
- The specific individuals mentioned in the questions are different
- The specific events mentioned in the questions are different
- The background information in the questions is different
- The key conditions in the questions are different
1: Identical and answer can be directly reused
0.5: Partially related and answer needs modification to be used
Return only a number between 0-1, without any additional content.
"""

View File

@@ -107,10 +107,16 @@ class NanoVectorDBStorage(BaseVectorStorage):
embeddings = await f
embeddings_list.append(embeddings)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
results = self._client.upsert(datas=list_data)
return results
if len(embeddings) == len(list_data):
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
results = self._client.upsert(datas=list_data)
return results
else:
# sometimes the embedding is not returned correctly. just log it.
logger.error(
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
)
async def query(self, query: str, top_k=5):
embedding = await self.embedding_func([query])

View File

@@ -17,6 +17,17 @@ import tiktoken
from lightrag.prompt import PROMPTS
class UnlimitedSemaphore:
"""A context manager that allows unlimited access."""
async def __aenter__(self):
pass
async def __aexit__(self, exc_type, exc, tb):
pass
ENCODER = None
logger = logging.getLogger("lightrag")
@@ -42,9 +53,17 @@ class EmbeddingFunc:
embedding_dim: int
max_token_size: int
func: callable
concurrent_limit: int = 16
def __post_init__(self):
if self.concurrent_limit != 0:
self._semaphore = asyncio.Semaphore(self.concurrent_limit)
else:
self._semaphore = UnlimitedSemaphore()
async def __call__(self, *args, **kwargs) -> np.ndarray:
return await self.func(*args, **kwargs)
async with self._semaphore:
return await self.func(*args, **kwargs)
def locate_json_string_body_from_string(content: str) -> Union[str, None]: