@@ -48,18 +48,25 @@ from .storage import (
|
||||
|
||||
|
||||
def lazy_external_import(module_name: str, class_name: str):
|
||||
"""Lazily import an external module and return a class from it."""
|
||||
"""Lazily import a class from an external module based on the package of the caller."""
|
||||
|
||||
def import_class():
|
||||
# Get the caller's module and package
|
||||
import inspect
|
||||
|
||||
caller_frame = inspect.currentframe().f_back
|
||||
module = inspect.getmodule(caller_frame)
|
||||
package = module.__package__ if module else None
|
||||
|
||||
def import_class(*args, **kwargs):
|
||||
import importlib
|
||||
|
||||
# Import the module using importlib
|
||||
module = importlib.import_module(module_name)
|
||||
module = importlib.import_module(module_name, package=package)
|
||||
|
||||
# Get the class from the module
|
||||
return getattr(module, class_name)
|
||||
# Get the class from the module and instantiate it
|
||||
cls = getattr(module, class_name)
|
||||
return cls(*args, **kwargs)
|
||||
|
||||
# Return the import_class function itself, not its result
|
||||
return import_class
|
||||
|
||||
|
||||
|
@@ -64,6 +64,7 @@ async def openai_complete_if_cache(
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
|
@@ -107,10 +107,16 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
embeddings = await f
|
||||
embeddings_list.append(embeddings)
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
for i, d in enumerate(list_data):
|
||||
d["__vector__"] = embeddings[i]
|
||||
results = self._client.upsert(datas=list_data)
|
||||
return results
|
||||
if len(embeddings) == len(list_data):
|
||||
for i, d in enumerate(list_data):
|
||||
d["__vector__"] = embeddings[i]
|
||||
results = self._client.upsert(datas=list_data)
|
||||
return results
|
||||
else:
|
||||
# sometimes the embedding is not returned correctly. just log it.
|
||||
logger.error(
|
||||
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
|
||||
)
|
||||
|
||||
async def query(self, query: str, top_k=5):
|
||||
embedding = await self.embedding_func([query])
|
||||
|
@@ -17,6 +17,17 @@ import tiktoken
|
||||
|
||||
from lightrag.prompt import PROMPTS
|
||||
|
||||
|
||||
class UnlimitedSemaphore:
|
||||
"""A context manager that allows unlimited access."""
|
||||
|
||||
async def __aenter__(self):
|
||||
pass
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
pass
|
||||
|
||||
|
||||
ENCODER = None
|
||||
|
||||
logger = logging.getLogger("lightrag")
|
||||
@@ -42,9 +53,17 @@ class EmbeddingFunc:
|
||||
embedding_dim: int
|
||||
max_token_size: int
|
||||
func: callable
|
||||
concurrent_limit: int = 16
|
||||
|
||||
def __post_init__(self):
|
||||
if self.concurrent_limit != 0:
|
||||
self._semaphore = asyncio.Semaphore(self.concurrent_limit)
|
||||
else:
|
||||
self._semaphore = UnlimitedSemaphore()
|
||||
|
||||
async def __call__(self, *args, **kwargs) -> np.ndarray:
|
||||
return await self.func(*args, **kwargs)
|
||||
async with self._semaphore:
|
||||
return await self.func(*args, **kwargs)
|
||||
|
||||
|
||||
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
||||
|
Reference in New Issue
Block a user