feat(lightrag): 添加 查询时使用embedding缓存功能

- 在 LightRAG 类中添加 embedding_cache_config配置项
- 实现基于 embedding 相似度的缓存查询和存储
- 添加量化和反量化函数,用于压缩 embedding 数据
- 新增示例演示 embedding 缓存的使用
This commit is contained in:
yuanxiaobin
2024-12-06 08:17:20 +08:00
parent 0ca819dd05
commit 525c971a23
5 changed files with 431 additions and 34 deletions

View File

@@ -596,6 +596,7 @@ if __name__ == "__main__":
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for embedding cache. Includes `enabled` (bool) to toggle cache and `similarity_threshold` (float) for cache retrieval | `{"enabled": False, "similarity_threshold": 0.95}` |
## API Server Implementation

View File

@@ -0,0 +1,112 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
)
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim
# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)
result = await embedding_func(["How are you?"])
print("embedding_func: ", result)
# asyncio.run(test_funcs())
async def main():
try:
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
rag = LightRAG(
working_dir=WORKING_DIR,
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.90, # 可以自定义阈值
},
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
# Perform local search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
# Perform global search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global"),
)
)
# Perform hybrid search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid"),
)
)
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -85,7 +85,10 @@ class LightRAG:
working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)
# Default not to use embedding cache
embedding_cache_config: dict = field(
default_factory=lambda: {"enabled": False, "similarity_threshold": 0.95}
)
kv_storage: str = field(default="JsonKVStorage")
vector_storage: str = field(default="NanoVectorDBStorage")
graph_storage: str = field(default="NetworkXStorage")

View File

@@ -33,6 +33,8 @@ from .utils import (
compute_args_hash,
wrap_embedding_func_with_attrs,
locate_json_string_body_from_string,
quantize_embedding,
get_best_cached_response,
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
@@ -65,10 +67,29 @@ async def openai_complete_if_cache(
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
# Use regular cache
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
@@ -81,10 +102,24 @@ async def openai_complete_if_cache(
content = response.choices[0].message.content
if r"\u" in content:
content = content.encode("utf-8").decode("unicode_escape")
# print(content)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
{
args_hash: {
"return": content,
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val if is_embedding_cache_enabled else None,
"embedding_max": max_val if is_embedding_cache_enabled else None,
"original_prompt": prompt,
}
}
)
return content
@@ -125,10 +160,28 @@ async def azure_openai_complete_if_cache(
if prompt is not None:
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
@@ -136,7 +189,21 @@ async def azure_openai_complete_if_cache(
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
{
args_hash: {
"return": response.choices[0].message.content,
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val if is_embedding_cache_enabled else None,
"embedding_max": max_val if is_embedding_cache_enabled else None,
"original_prompt": prompt,
}
}
)
return response.choices[0].message.content
@@ -204,10 +271,29 @@ async def bedrock_complete_if_cache(
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
# Use regular cache
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Call model via Converse API
session = aioboto3.Session()
@@ -223,6 +309,19 @@ async def bedrock_complete_if_cache(
args_hash: {
"return": response["output"]["message"]["content"][0]["text"],
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val
if is_embedding_cache_enabled
else None,
"embedding_max": max_val
if is_embedding_cache_enabled
else None,
"original_prompt": prompt,
}
}
)
@@ -245,7 +344,11 @@ def initialize_hf_model(model_name):
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
model,
prompt,
system_prompt=None,
history_messages=[],
**kwargs,
) -> str:
model_name = model
hf_model, hf_tokenizer = initialize_hf_model(model_name)
@@ -257,10 +360,30 @@ async def hf_model_if_cache(
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
# Use regular cache
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
input_prompt = ""
try:
input_prompt = hf_tokenizer.apply_chat_template(
@@ -305,12 +428,32 @@ async def hf_model_if_cache(
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
)
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
await hashing_kv.upsert(
{
args_hash: {
"return": response_text,
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val if is_embedding_cache_enabled else None,
"embedding_max": max_val if is_embedding_cache_enabled else None,
"original_prompt": prompt,
}
}
)
return response_text
async def ollama_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
model,
prompt,
system_prompt=None,
history_messages=[],
**kwargs,
) -> str:
kwargs.pop("max_tokens", None)
# kwargs.pop("response_format", None) # allow json
@@ -326,18 +469,52 @@ async def ollama_model_if_cache(
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
# Use regular cache
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
result = response["message"]["content"]
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
await hashing_kv.upsert(
{
args_hash: {
"return": result,
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val if is_embedding_cache_enabled else None,
"embedding_max": max_val if is_embedding_cache_enabled else None,
"original_prompt": prompt,
}
}
)
return result
@@ -444,10 +621,29 @@ async def lmdeploy_model_if_cache(
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
)
is_embedding_cache_enabled = embedding_cache_config["enabled"]
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
current_embedding = await embedding_model_func([prompt])
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
best_cached_response = await get_best_cached_response(
hashing_kv,
current_embedding[0],
similarity_threshold=embedding_cache_config["similarity_threshold"],
)
if best_cached_response is not None:
return best_cached_response
else:
# Use regular cache
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens,
@@ -466,7 +662,23 @@ async def lmdeploy_model_if_cache(
response += res.response
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": response, "model": model}})
await hashing_kv.upsert(
{
args_hash: {
"return": response,
"model": model,
"embedding": quantized.tobytes().hex()
if is_embedding_cache_enabled
else None,
"embedding_shape": quantized.shape
if is_embedding_cache_enabled
else None,
"embedding_min": min_val if is_embedding_cache_enabled else None,
"embedding_max": max_val if is_embedding_cache_enabled else None,
"original_prompt": prompt,
}
}
)
return response

View File

@@ -307,3 +307,72 @@ def process_combine_contexts(hl, ll):
combined_sources_result = "\n".join(combined_sources_result)
return combined_sources_result
async def get_best_cached_response(
hashing_kv, current_embedding, similarity_threshold=0.95
):
"""Get the cached response with highest similarity"""
try:
# Get all keys using list_keys()
all_keys = await hashing_kv.all_keys()
max_similarity = 0
best_cached_response = None
# Get cached data one by one
for key in all_keys:
cache_data = await hashing_kv.get_by_id(key)
if cache_data is None or "embedding" not in cache_data:
continue
# Convert cached embedding list to ndarray
cached_quantized = np.frombuffer(
bytes.fromhex(cache_data["embedding"]), dtype=np.uint8
).reshape(cache_data["embedding_shape"])
cached_embedding = dequantize_embedding(
cached_quantized,
cache_data["embedding_min"],
cache_data["embedding_max"],
)
similarity = cosine_similarity(current_embedding, cached_embedding)
if similarity > max_similarity:
max_similarity = similarity
best_cached_response = cache_data["return"]
if max_similarity > similarity_threshold:
return best_cached_response
return None
except Exception as e:
logger.warning(f"Error in get_best_cached_response: {e}")
return None
def cosine_similarity(v1, v2):
"""Calculate cosine similarity between two vectors"""
dot_product = np.dot(v1, v2)
norm1 = np.linalg.norm(v1)
norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2)
def quantize_embedding(embedding: np.ndarray, bits=8) -> tuple:
"""Quantize embedding to specified bits"""
# Calculate min/max values for reconstruction
min_val = embedding.min()
max_val = embedding.max()
# Quantize to 0-255 range
scale = (2**bits - 1) / (max_val - min_val)
quantized = np.round((embedding - min_val) * scale).astype(np.uint8)
return quantized, min_val, max_val
def dequantize_embedding(
quantized: np.ndarray, min_val: float, max_val: float, bits=8
) -> np.ndarray:
"""Restore quantized embedding"""
scale = (max_val - min_val) / (2**bits - 1)
return (quantized * scale + min_val).astype(np.float32)