78
README.md
78
README.md
@@ -7,7 +7,6 @@
|
|||||||
<p>
|
<p>
|
||||||
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
||||||
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
|
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
|
||||||
<img src="https://badges.pufler.dev/visits/hkuds/lightrag?style=flat-square&logo=github">
|
|
||||||
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
|
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
@@ -21,7 +20,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
## 🎉 News
|
## 🎉 News
|
||||||
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
|
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-ollama-models)!
|
||||||
|
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-hugging-face-models)!
|
||||||
|
|
||||||
## Install
|
## Install
|
||||||
|
|
||||||
@@ -37,7 +37,7 @@ pip install lightrag-hku
|
|||||||
```
|
```
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
|
* All the code can be found in the `examples`.
|
||||||
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
|
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
|
||||||
* Download the demo text "A Christmas Carol by Charles Dickens":
|
* Download the demo text "A Christmas Carol by Charles Dickens":
|
||||||
```bash
|
```bash
|
||||||
@@ -75,6 +75,42 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
|
|||||||
# Perform hybrid search
|
# Perform hybrid search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Open AI-like APIs
|
||||||
|
LightRAG also support Open AI-like chat/embeddings APIs:
|
||||||
|
```python
|
||||||
|
async def llm_model_func(
|
||||||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
"solar-mini",
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||||
|
base_url="https://api.upstage.ai/v1/solar",
|
||||||
|
**kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
|
return await openai_embedding(
|
||||||
|
texts,
|
||||||
|
model="solar-embedding-1-large-query",
|
||||||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||||
|
base_url="https://api.upstage.ai/v1/solar"
|
||||||
|
)
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=4096,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=embedding_func
|
||||||
|
)
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### Using Hugging Face Models
|
### Using Hugging Face Models
|
||||||
If you want to use Hugging Face models, you only need to set LightRAG as follows:
|
If you want to use Hugging Face models, you only need to set LightRAG as follows:
|
||||||
```python
|
```python
|
||||||
@@ -84,7 +120,7 @@ from transformers import AutoModel, AutoTokenizer
|
|||||||
# Initialize LightRAG with Hugging Face model
|
# Initialize LightRAG with Hugging Face model
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=hf_model_complete, # Use Hugging Face complete model for text generation
|
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
|
||||||
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
|
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
|
||||||
# Use Hugging Face embedding function
|
# Use Hugging Face embedding function
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(
|
||||||
@@ -98,11 +134,35 @@ rag = LightRAG(
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Using Ollama Models
|
||||||
|
If you want to use Ollama models, you only need to set LightRAG as follows:
|
||||||
|
```python
|
||||||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||||
|
|
||||||
|
# Initialize LightRAG with Ollama model
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
|
||||||
|
llm_model_name='your_model_name', # Your model name
|
||||||
|
# Use Ollama embedding function
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts,
|
||||||
|
embed_model="nomic-embed-text"
|
||||||
|
)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### Batch Insert
|
### Batch Insert
|
||||||
```python
|
```python
|
||||||
# Batch Insert: Insert multiple texts at once
|
# Batch Insert: Insert multiple texts at once
|
||||||
rag.insert(["TEXT1", "TEXT2",...])
|
rag.insert(["TEXT1", "TEXT2",...])
|
||||||
```
|
```
|
||||||
|
|
||||||
### Incremental Insert
|
### Incremental Insert
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@@ -186,6 +246,7 @@ Output your evaluation in the following JSON format:
|
|||||||
}}
|
}}
|
||||||
}}
|
}}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Overall Performance Table
|
### Overall Performance Table
|
||||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||||
@@ -212,6 +273,7 @@ Output your evaluation in the following JSON format:
|
|||||||
|
|
||||||
## Reproduce
|
## Reproduce
|
||||||
All the code can be found in the `./reproduce` directory.
|
All the code can be found in the `./reproduce` directory.
|
||||||
|
|
||||||
### Step-0 Extract Unique Contexts
|
### Step-0 Extract Unique Contexts
|
||||||
First, we need to extract unique contexts in the datasets.
|
First, we need to extract unique contexts in the datasets.
|
||||||
```python
|
```python
|
||||||
@@ -265,6 +327,7 @@ def extract_unique_contexts(input_directory, output_directory):
|
|||||||
print("All files have been processed.")
|
print("All files have been processed.")
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Step-1 Insert Contexts
|
### Step-1 Insert Contexts
|
||||||
For the extracted contexts, we insert them into the LightRAG system.
|
For the extracted contexts, we insert them into the LightRAG system.
|
||||||
|
|
||||||
@@ -286,6 +349,7 @@ def insert_text(rag, file_path):
|
|||||||
if retries == max_retries:
|
if retries == max_retries:
|
||||||
print("Insertion failed after exceeding the maximum number of retries")
|
print("Insertion failed after exceeding the maximum number of retries")
|
||||||
```
|
```
|
||||||
|
|
||||||
### Step-2 Generate Queries
|
### Step-2 Generate Queries
|
||||||
|
|
||||||
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
|
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
|
||||||
@@ -326,8 +390,10 @@ def extract_queries(file_path):
|
|||||||
├── examples
|
├── examples
|
||||||
│ ├── batch_eval.py
|
│ ├── batch_eval.py
|
||||||
│ ├── generate_query.py
|
│ ├── generate_query.py
|
||||||
│ ├── lightrag_openai_demo.py
|
│ ├── lightrag_hf_demo.py
|
||||||
│ └── lightrag_hf_demo.py
|
│ ├── lightrag_ollama_demo.py
|
||||||
|
│ ├── lightrag_openai_compatible_demo.py
|
||||||
|
│ └── lightrag_openai_demo.py
|
||||||
├── lightrag
|
├── lightrag
|
||||||
│ ├── __init__.py
|
│ ├── __init__.py
|
||||||
│ ├── base.py
|
│ ├── base.py
|
||||||
|
40
examples/lightrag_ollama_demo.py
Normal file
40
examples/lightrag_ollama_demo.py
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=ollama_model_complete,
|
||||||
|
llm_model_name='your_model_name',
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts,
|
||||||
|
embed_model="nomic-embed-text"
|
||||||
|
)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
with open("./book.txt") as f:
|
||||||
|
rag.insert(f.read())
|
||||||
|
|
||||||
|
# Perform naive search
|
||||||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||||
|
|
||||||
|
# Perform local search
|
||||||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||||
|
|
||||||
|
# Perform global search
|
||||||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||||
|
|
||||||
|
# Perform hybrid search
|
||||||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
@@ -1,5 +1,5 @@
|
|||||||
from .lightrag import LightRAG, QueryParam
|
from .lightrag import LightRAG, QueryParam
|
||||||
|
|
||||||
__version__ = "0.0.5"
|
__version__ = "0.0.6"
|
||||||
__author__ = "Zirui Guo"
|
__author__ = "Zirui Guo"
|
||||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||||
|
@@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import ollama
|
||||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||||
from tenacity import (
|
from tenacity import (
|
||||||
retry,
|
retry,
|
||||||
@@ -92,6 +93,34 @@ async def hf_model_if_cache(
|
|||||||
)
|
)
|
||||||
return response_text
|
return response_text
|
||||||
|
|
||||||
|
async def ollama_model_if_cache(
|
||||||
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
kwargs.pop("max_tokens", None)
|
||||||
|
kwargs.pop("response_format", None)
|
||||||
|
|
||||||
|
ollama_client = ollama.AsyncClient()
|
||||||
|
messages = []
|
||||||
|
if system_prompt:
|
||||||
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
|
|
||||||
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||||
|
messages.extend(history_messages)
|
||||||
|
messages.append({"role": "user", "content": prompt})
|
||||||
|
if hashing_kv is not None:
|
||||||
|
args_hash = compute_args_hash(model, messages)
|
||||||
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||||
|
if if_cache_return is not None:
|
||||||
|
return if_cache_return["return"]
|
||||||
|
|
||||||
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||||
|
|
||||||
|
result = response["message"]["content"]
|
||||||
|
|
||||||
|
if hashing_kv is not None:
|
||||||
|
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
async def gpt_4o_complete(
|
async def gpt_4o_complete(
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
@@ -116,8 +145,6 @@ async def gpt_4o_mini_complete(
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
async def hf_model_complete(
|
async def hf_model_complete(
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
@@ -130,6 +157,18 @@ async def hf_model_complete(
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
async def ollama_model_complete(
|
||||||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
||||||
|
return await ollama_model_if_cache(
|
||||||
|
model_name,
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||||
@retry(
|
@retry(
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(3),
|
||||||
@@ -154,6 +193,13 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
|||||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||||
return embeddings.detach().numpy()
|
return embeddings.detach().numpy()
|
||||||
|
|
||||||
|
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||||
|
embed_text = []
|
||||||
|
for text in texts:
|
||||||
|
data = ollama.embeddings(model=embed_model, prompt=text)
|
||||||
|
embed_text.append(data["embedding"])
|
||||||
|
|
||||||
|
return embed_text
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import asyncio
|
import asyncio
|
||||||
|
@@ -6,3 +6,7 @@ nano-vectordb
|
|||||||
hnswlib
|
hnswlib
|
||||||
xxhash
|
xxhash
|
||||||
tenacity
|
tenacity
|
||||||
|
transformers
|
||||||
|
torch
|
||||||
|
ollama
|
||||||
|
accelerate
|
Reference in New Issue
Block a user