Added Azure OpenAI api sample with streaming
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -15,3 +15,7 @@ ignore_this.txt
|
||||
gui/
|
||||
*.log
|
||||
.vscode
|
||||
.env
|
||||
venv/
|
||||
examples/input/
|
||||
examples/output/
|
7
api/.env.aoi.example
Normal file
7
api/.env.aoi.example
Normal file
@@ -0,0 +1,7 @@
|
||||
AZURE_OPENAI_API_VERSION=2024-08-01-preview
|
||||
AZURE_OPENAI_DEPLOYMENT=gpt-4o
|
||||
AZURE_OPENAI_API_KEY=myapikey
|
||||
AZURE_OPENAI_ENDPOINT=https://myendpoint.openai.azure.com
|
||||
|
||||
AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
|
||||
AZURE_EMBEDDING_API_VERSION=2023-05-15
|
183
api/README_AZURE_OPENAI.md
Normal file
183
api/README_AZURE_OPENAI.md
Normal file
@@ -0,0 +1,183 @@
|
||||
|
||||
# LightRAG API Server
|
||||
|
||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using OpenAI's language models.
|
||||
|
||||
## Features
|
||||
|
||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
||||
- 📡 Streaming and non-streaming responses
|
||||
- 📝 Document management (insert, batch upload, clear)
|
||||
- ⚙️ Highly configurable model parameters
|
||||
- 📚 Support for text and file uploads
|
||||
- 🔧 RESTful API with automatic documentation
|
||||
- 🚀 Built with FastAPI for high performance
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.8+
|
||||
- Azure OpenAI API key
|
||||
- Azure OpenAI Deployments (gpt-4o, text-embedding-3-large)
|
||||
- Required Python packages:
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- lightrag
|
||||
- pydantic
|
||||
- openai
|
||||
- nest-asyncio
|
||||
|
||||
## Installation
|
||||
If you are using Windows, you will need to download and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
Make sure you install the VS 2022 C++ x64/x86 Build tools from individual components tab.
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/ParisNeo/LightRAG.git
|
||||
cd api
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
python -m venv venv
|
||||
source venv/bin/activate
|
||||
#venv\Scripts\activate for Windows
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Set up environment variables:
|
||||
use the `.env` file to set the environment variables (you can copy the `.env.aoi.example` file and rename it to `.env`),
|
||||
or set them manually:
|
||||
```bash
|
||||
export AZURE_OPENAI_API_VERSION='2024-08-01-preview'
|
||||
export AZURE_OPENAI_DEPLOYMENT='gpt-4o'
|
||||
export AZURE_OPENAI_API_KEY='myapikey'
|
||||
export AZURE_OPENAI_ENDPOINT='https://myendpoint.openai.azure.com'
|
||||
export AZURE_EMBEDDING_DEPLOYMENT='text-embedding-3-large'
|
||||
export AZURE_EMBEDDING_API_VERSION='2023-05-15'
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
The server can be configured using command-line arguments:
|
||||
|
||||
```bash
|
||||
python azure_openai_lightrag_server.py --help
|
||||
```
|
||||
|
||||
Available options:
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | gpt-4 | OpenAI model name |
|
||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --enable-cache | True | Enable response cache |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Basic usage with default settings:
|
||||
```bash
|
||||
python azure_openai_lightrag_server.py
|
||||
```
|
||||
|
||||
2. Custom configuration:
|
||||
```bash
|
||||
python azure_openai_lightrag_server.py --model gpt-4o --port 8080 --working-dir ./custom_rag
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
```bash
|
||||
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When the server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [OpenAI](https://openai.com/) for language model inference
|
437
api/azure_openai_lightrag_server.py
Normal file
437
api/azure_openai_lightrag_server.py
Normal file
@@ -0,0 +1,437 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
||||
from pydantic import BaseModel
|
||||
import asyncio
|
||||
import logging
|
||||
import argparse
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_complete, azure_openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from typing import Optional, List
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import aiofiles
|
||||
from ascii_colors import trace_exception
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
import inspect
|
||||
import json
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
load_dotenv()
|
||||
|
||||
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
||||
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
||||
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
||||
|
||||
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG FastAPI Server with OpenAI integration"
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument(
|
||||
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
||||
)
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument(
|
||||
"--working-dir",
|
||||
default="./rag_storage",
|
||||
help="Working directory for RAG storage (default: ./rag_storage)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-dir",
|
||||
default="./inputs",
|
||||
help="Directory containing input documents (default: ./inputs)",
|
||||
)
|
||||
|
||||
# Model configuration
|
||||
parser.add_argument(
|
||||
"--model", default="gpt-4o", help="OpenAI model name (default: gpt-4o)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
default="text-embedding-3-large",
|
||||
help="OpenAI embedding model (default: text-embedding-3-large)",
|
||||
)
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
type=int,
|
||||
default=32768,
|
||||
help="Maximum token size (default: 32768)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-embed-tokens",
|
||||
type=int,
|
||||
default=8192,
|
||||
help="Maximum embedding token size (default: 8192)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--enable-cache",
|
||||
default=True,
|
||||
help="Enable response cache (default: True)",
|
||||
)
|
||||
# Logging configuration
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
default="INFO",
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||
help="Logging level (default: INFO)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class DocumentManager:
|
||||
"""Handles document operations and tracking"""
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
||||
self.input_dir = Path(input_dir)
|
||||
self.supported_extensions = supported_extensions
|
||||
self.indexed_files = set()
|
||||
|
||||
# Create input directory if it doesn't exist
|
||||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def scan_directory(self) -> List[Path]:
|
||||
"""Scan input directory for new files"""
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||
if file_path not in self.indexed_files:
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
|
||||
def mark_as_indexed(self, file_path: Path):
|
||||
"""Mark a file as indexed"""
|
||||
self.indexed_files.add(file_path)
|
||||
|
||||
def is_supported_file(self, filename: str) -> bool:
|
||||
"""Check if file type is supported"""
|
||||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||
|
||||
|
||||
# Pydantic models
|
||||
class SearchMode(str, Enum):
|
||||
naive = "naive"
|
||||
local = "local"
|
||||
global_ = "global"
|
||||
hybrid = "hybrid"
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: SearchMode = SearchMode.hybrid
|
||||
#stream: bool = False
|
||||
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str
|
||||
message: str
|
||||
document_count: int
|
||||
|
||||
|
||||
async def get_embedding_dim(embedding_model: str) -> int:
|
||||
"""Get embedding dimensions for the specified model"""
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await azure_openai_embedding(test_text, model=embedding_model)
|
||||
return embedding.shape[1]
|
||||
|
||||
|
||||
def create_app(args):
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
||||
)
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="LightRAG API",
|
||||
description="API for querying text using LightRAG with OpenAI integration",
|
||||
)
|
||||
|
||||
# Create working directory if it doesn't exist
|
||||
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize document manager
|
||||
doc_manager = DocumentManager(args.input_dir)
|
||||
|
||||
# Get embedding dimensions
|
||||
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
||||
|
||||
async def async_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
):
|
||||
"""Async wrapper for OpenAI completion"""
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
|
||||
return await azure_openai_complete_if_cache(
|
||||
args.model,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url=AZURE_OPENAI_ENDPOINT,
|
||||
api_key=AZURE_OPENAI_API_KEY,
|
||||
api_version=AZURE_OPENAI_API_VERSION,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Initialize RAG with OpenAI configuration
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=args.enable_cache,
|
||||
working_dir=args.working_dir,
|
||||
llm_model_func=async_openai_complete,
|
||||
llm_model_name=args.model,
|
||||
llm_model_max_token_size=args.max_tokens,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=args.max_embed_tokens,
|
||||
func=lambda texts: azure_openai_embedding(texts, model=args.embedding_model),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Index all files in input directory during startup"""
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
for file_path in new_files:
|
||||
try:
|
||||
# Use async file reading
|
||||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||||
content = await f.read()
|
||||
# Use the async version of insert directly
|
||||
await rag.ainsert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
logging.info(f"Indexed file: {file_path}")
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during startup indexing: {str(e)}")
|
||||
|
||||
@app.post("/documents/scan")
|
||||
async def scan_for_new_documents():
|
||||
"""Manually trigger scanning for new documents"""
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
indexed_count = 0
|
||||
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
await rag.ainsert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
indexed_count += 1
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"indexed_count": indexed_count,
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/resetcache")
|
||||
async def reset_cache():
|
||||
"""Manually reset cache"""
|
||||
try:
|
||||
cachefile = args.working_dir + "/kv_store_llm_response_cache.json"
|
||||
if os.path.exists(cachefile):
|
||||
with open(cachefile, "w") as f:
|
||||
f.write("{}")
|
||||
return {
|
||||
"status": "success"
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/upload")
|
||||
async def upload_to_input_dir(file: UploadFile = File(...)):
|
||||
"""Upload a file to the input directory"""
|
||||
try:
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
file_path = doc_manager.input_dir / file.filename
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
# Immediately index the uploaded file
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
await rag.ainsert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"File uploaded and indexed: {file.filename}",
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/query", response_model=QueryResponse)
|
||||
async def query_text(request: QueryRequest):
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=False),
|
||||
)
|
||||
return QueryResponse(response=response)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/query/stream")
|
||||
async def query_text_stream(request: QueryRequest):
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=True),
|
||||
)
|
||||
if inspect.isasyncgen(response):
|
||||
async def stream_generator():
|
||||
async for chunk in response:
|
||||
yield json.dumps({"data": chunk}) + "\n"
|
||||
|
||||
return StreamingResponse(stream_generator(), media_type="application/json")
|
||||
else:
|
||||
return QueryResponse(response=response)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/text", response_model=InsertResponse)
|
||||
async def insert_text(request: InsertTextRequest):
|
||||
try:
|
||||
rag.insert(request.text)
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully inserted",
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/file", response_model=InsertResponse)
|
||||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||||
try:
|
||||
content = await file.read()
|
||||
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Unsupported file type. Only .txt and .md files are supported",
|
||||
)
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' successfully inserted",
|
||||
document_count=len(rag),
|
||||
)
|
||||
except UnicodeDecodeError:
|
||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/batch", response_model=InsertResponse)
|
||||
async def insert_batch(files: List[UploadFile] = File(...)):
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
|
||||
for file in files:
|
||||
try:
|
||||
content = await file.read()
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
except Exception as e:
|
||||
failed_files.append(f"{file.filename} ({str(e)})")
|
||||
|
||||
status_message = f"Successfully inserted {inserted_count} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
return InsertResponse(
|
||||
status="success" if inserted_count > 0 else "partial_success",
|
||||
message=status_message,
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.delete("/documents", response_model=InsertResponse)
|
||||
async def clear_documents():
|
||||
try:
|
||||
rag.text_chunks = []
|
||||
rag.entities_vdb = None
|
||||
rag.relationships_vdb = None
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="All documents cleared successfully",
|
||||
document_count=0,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get("/health")
|
||||
async def get_status():
|
||||
"""Get current system status"""
|
||||
return {
|
||||
"status": "healthy",
|
||||
"working_directory": str(args.working_dir),
|
||||
"input_directory": str(args.input_dir),
|
||||
"indexed_files": len(doc_manager.indexed_files),
|
||||
"configuration": {
|
||||
"model": args.model,
|
||||
"embedding_model": args.embedding_model,
|
||||
"max_tokens": args.max_tokens,
|
||||
"embedding_dim": embedding_dim,
|
||||
},
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
@@ -2,3 +2,16 @@ ascii_colors
|
||||
fastapi
|
||||
python-multipart
|
||||
uvicorn
|
||||
nest_asyncio
|
||||
lightrag-hku
|
||||
tqdm
|
||||
aioboto3
|
||||
numpy
|
||||
ollama
|
||||
torch
|
||||
openai
|
||||
tenacity
|
||||
transformers
|
||||
tiktoken
|
||||
nano_vectordb
|
||||
python-dotenv
|
7
examples/.env.oai.example
Normal file
7
examples/.env.oai.example
Normal file
@@ -0,0 +1,7 @@
|
||||
AZURE_OPENAI_API_VERSION=2024-08-01-preview
|
||||
AZURE_OPENAI_DEPLOYMENT=gpt-4o
|
||||
AZURE_OPENAI_API_KEY=myapikey
|
||||
AZURE_OPENAI_ENDPOINT=https://myendpoint.openai.azure.com
|
||||
|
||||
AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
|
||||
AZURE_EMBEDDING_API_VERSION=2023-05-15
|
@@ -140,12 +140,34 @@ async def azure_openai_complete_if_cache(
|
||||
if prompt is not None:
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
content = response.choices[0].message.content
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
return content
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
return content
|
||||
|
||||
|
||||
class BedrockError(Exception):
|
||||
|
Reference in New Issue
Block a user