Merge pull request #960 from FeHuynhVI/fix-delete-by-doc-id

feat: fix delete by document id
This commit is contained in:
Yannick Stephan
2025-02-28 19:44:05 +01:00
committed by GitHub
2 changed files with 70 additions and 36 deletions

View File

@@ -359,14 +359,14 @@ class LightRAG:
self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES
),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
meta_fields={"entity_name", "source_id", "content"},
)
self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS
),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
meta_fields={"src_id", "tgt_id", "source_id", "content"},
)
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
@@ -1287,12 +1287,14 @@ class LightRAG:
logger.debug(f"Starting deletion for document {doc_id}")
doc_to_chunk_id = doc_id.replace("doc", "chunk")
# 2. Get all related chunks
chunks = await self.text_chunks.get_by_id(doc_id)
chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
if not chunks:
return
chunk_ids = list(chunks.keys())
chunk_ids = {chunks["full_doc_id"].replace("doc", "chunk")}
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
# 3. Before deleting, check the related entities and relationships for these chunks
@@ -1301,7 +1303,7 @@ class LightRAG:
entities = [
dp
for dp in self.entities_vdb.client_storage["data"]
if dp.get("source_id") == chunk_id
if chunk_id in dp.get("source_id")
]
logger.debug(f"Chunk {chunk_id} has {len(entities)} related entities")
@@ -1309,7 +1311,7 @@ class LightRAG:
relations = [
dp
for dp in self.relationships_vdb.client_storage["data"]
if dp.get("source_id") == chunk_id
if chunk_id in dp.get("source_id")
]
logger.debug(f"Chunk {chunk_id} has {len(relations)} related relations")
@@ -1420,42 +1422,71 @@ class LightRAG:
f"Updated {len(entities_to_update)} entities and {len(relationships_to_update)} relationships."
)
async def process_data(data_type, vdb, chunk_id):
# Check data (entities or relationships)
data_with_chunk = [
dp
for dp in vdb.client_storage["data"]
if chunk_id in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
data_for_vdb = {}
if data_with_chunk:
logger.warning(
f"found {len(data_with_chunk)} {data_type} still referencing chunk {chunk_id}"
)
for item in data_with_chunk:
old_sources = item["source_id"].split(GRAPH_FIELD_SEP)
new_sources = [src for src in old_sources if src != chunk_id]
if not new_sources:
logger.info(
f"{data_type} {item.get('entity_name', 'N/A')} is deleted because source_id is not exists"
)
await vdb.delete_entity(item)
else:
item["source_id"] = GRAPH_FIELD_SEP.join(new_sources)
item_id = item["__id__"]
data_for_vdb[item_id] = item.copy()
if data_type == "entities":
data_for_vdb[item_id]["content"] = data_for_vdb[
item_id
].get("content") or (
item.get("entity_name", "")
+ (item.get("description") or "")
)
else: # relationships
data_for_vdb[item_id]["content"] = data_for_vdb[
item_id
].get("content") or (
(item.get("keywords") or "")
+ (item.get("src_id") or "")
+ (item.get("tgt_id") or "")
+ (item.get("description") or "")
)
if data_for_vdb:
await vdb.upsert(data_for_vdb)
logger.info(f"Successfully updated {data_type} in vector DB")
# Add verification step
async def verify_deletion():
# Verify if the document has been deleted
if await self.full_docs.get_by_id(doc_id):
logger.error(f"Document {doc_id} still exists in full_docs")
logger.warning(f"Document {doc_id} still exists in full_docs")
# Verify if chunks have been deleted
remaining_chunks = await self.text_chunks.get_by_id(doc_id)
remaining_chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
if remaining_chunks:
logger.error(f"Found {len(remaining_chunks)} remaining chunks")
logger.warning(f"Found {len(remaining_chunks)} remaining chunks")
# Verify entities and relationships
for chunk_id in chunk_ids:
# Check entities
entities_with_chunk = [
dp
for dp in self.entities_vdb.client_storage["data"]
if chunk_id
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if entities_with_chunk:
logger.error(
f"Found {len(entities_with_chunk)} entities still referencing chunk {chunk_id}"
)
# Check relationships
relations_with_chunk = [
dp
for dp in self.relationships_vdb.client_storage["data"]
if chunk_id
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if relations_with_chunk:
logger.error(
f"Found {len(relations_with_chunk)} relations still referencing chunk {chunk_id}"
)
await process_data("entities", self.entities_vdb, chunk_id)
await process_data(
"relationships", self.relationships_vdb, chunk_id
)
await verify_deletion()

View File

@@ -323,6 +323,7 @@ async def _merge_edges_then_upsert(
tgt_id=tgt_id,
description=description,
keywords=keywords,
source_id=source_id,
)
return edge_data
@@ -548,6 +549,7 @@ async def extract_entities(
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + dp["description"],
"entity_name": dp["entity_name"],
"source_id": dp["source_id"],
}
for dp in all_entities_data
}
@@ -558,6 +560,7 @@ async def extract_entities(
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"source_id": dp["source_id"],
"content": dp["keywords"]
+ dp["src_id"]
+ dp["tgt_id"]
@@ -1113,7 +1116,7 @@ async def _get_node_data(
len_node_datas = len(node_datas)
node_datas = truncate_list_by_token_size(
node_datas,
key=lambda x: x["description"],
key=lambda x: x["description"] if x["description"] is not None else "",
max_token_size=query_param.max_token_for_local_context,
)
logger.debug(
@@ -1296,7 +1299,7 @@ async def _find_most_related_edges_from_entities(
)
all_edges_data = truncate_list_by_token_size(
all_edges_data,
key=lambda x: x["description"],
key=lambda x: x["description"] if x["description"] is not None else "",
max_token_size=query_param.max_token_for_global_context,
)
@@ -1350,7 +1353,7 @@ async def _get_edge_data(
)
edge_datas = truncate_list_by_token_size(
edge_datas,
key=lambda x: x["description"],
key=lambda x: x["description"] if x["description"] is not None else "",
max_token_size=query_param.max_token_for_global_context,
)
use_entities, use_text_units = await asyncio.gather(
@@ -1454,7 +1457,7 @@ async def _find_most_related_entities_from_relationships(
len_node_datas = len(node_datas)
node_datas = truncate_list_by_token_size(
node_datas,
key=lambda x: x["description"],
key=lambda x: x["description"] if x["description"] is not None else "",
max_token_size=query_param.max_token_for_local_context,
)
logger.debug(