update reproduce
This commit is contained in:
114
README.md
114
README.md
@@ -149,7 +149,6 @@ Output your evaluation in the following JSON format:
|
||||
}}
|
||||
```
|
||||
### Overall Performance Table
|
||||
### Overall Performance Table
|
||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
||||
@@ -173,6 +172,114 @@ Output your evaluation in the following JSON format:
|
||||
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
|
||||
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |
|
||||
|
||||
## Reproduce
|
||||
All the code can be found in the `./reproduce` directory.
|
||||
### Step-0 Extract Unique Contexts
|
||||
First, we need to extract unique contexts in the datasets.
|
||||
```python
|
||||
def extract_unique_contexts(input_directory, output_directory):
|
||||
|
||||
os.makedirs(output_directory, exist_ok=True)
|
||||
|
||||
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
|
||||
print(f"Found {len(jsonl_files)} JSONL files.")
|
||||
|
||||
for file_path in jsonl_files:
|
||||
filename = os.path.basename(file_path)
|
||||
name, ext = os.path.splitext(filename)
|
||||
output_filename = f"{name}_unique_contexts.json"
|
||||
output_path = os.path.join(output_directory, output_filename)
|
||||
|
||||
unique_contexts_dict = {}
|
||||
|
||||
print(f"Processing file: {filename}")
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as infile:
|
||||
for line_number, line in enumerate(infile, start=1):
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
try:
|
||||
json_obj = json.loads(line)
|
||||
context = json_obj.get('context')
|
||||
if context and context not in unique_contexts_dict:
|
||||
unique_contexts_dict[context] = None
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {filename}")
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"An error occurred while processing file {filename}: {e}")
|
||||
continue
|
||||
|
||||
unique_contexts_list = list(unique_contexts_dict.keys())
|
||||
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
|
||||
|
||||
try:
|
||||
with open(output_path, 'w', encoding='utf-8') as outfile:
|
||||
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
|
||||
print(f"Unique `context` entries have been saved to: {output_filename}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred while saving to the file {output_filename}: {e}")
|
||||
|
||||
print("All files have been processed.")
|
||||
|
||||
```
|
||||
### Step-1 Insert Contexts
|
||||
For the extracted contexts, we insert them into the LightRAG system.
|
||||
|
||||
```python
|
||||
def insert_text(rag, file_path):
|
||||
with open(file_path, mode='r') as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
retries = 0
|
||||
max_retries = 3
|
||||
while retries < max_retries:
|
||||
try:
|
||||
rag.insert(unique_contexts)
|
||||
break
|
||||
except Exception as e:
|
||||
retries += 1
|
||||
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
|
||||
time.sleep(10)
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
```
|
||||
### Step-2 Generate Queries
|
||||
|
||||
We extract tokens from both the first half and the second half of each context in the dataset, then combine them to generate queries for dataset descriptions.
|
||||
```python
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
def get_summary(context, tot_tokens=2000):
|
||||
tokens = tokenizer.tokenize(context)
|
||||
half_tokens = tot_tokens // 2
|
||||
|
||||
start_tokens = tokens[1000:1000 + half_tokens]
|
||||
end_tokens = tokens[-(1000 + half_tokens):1000]
|
||||
|
||||
summary_tokens = start_tokens + end_tokens
|
||||
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
||||
|
||||
return summary
|
||||
```
|
||||
|
||||
### Step-3 Query
|
||||
For the queries generated in Step-2, we will extract them and query LightRAG.
|
||||
```python
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace('**', '')
|
||||
|
||||
queries = re.findall(r'- Question \d+: (.+)', data)
|
||||
|
||||
return queries
|
||||
```
|
||||
## Code Structure
|
||||
|
||||
```python
|
||||
@@ -191,6 +298,11 @@ Output your evaluation in the following JSON format:
|
||||
│ ├── prompt.py
|
||||
│ ├── storage.py
|
||||
│ └── utils.jpeg
|
||||
├── reproduce
|
||||
│ ├── Step_0.py
|
||||
│ ├── Step_1.py
|
||||
│ ├── Step_2.py
|
||||
│ └── Step_3.py
|
||||
├── LICENSE
|
||||
├── README.md
|
||||
├── requirements.txt
|
||||
|
63
reproduce/Step_0.py
Normal file
63
reproduce/Step_0.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import os
|
||||
import json
|
||||
import glob
|
||||
import argparse
|
||||
|
||||
def extract_unique_contexts(input_directory, output_directory):
|
||||
|
||||
os.makedirs(output_directory, exist_ok=True)
|
||||
|
||||
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
|
||||
print(f"Found {len(jsonl_files)} JSONL files.")
|
||||
|
||||
for file_path in jsonl_files:
|
||||
filename = os.path.basename(file_path)
|
||||
name, ext = os.path.splitext(filename)
|
||||
output_filename = f"{name}_unique_contexts.json"
|
||||
output_path = os.path.join(output_directory, output_filename)
|
||||
|
||||
unique_contexts_dict = {}
|
||||
|
||||
print(f"Processing file: {filename}")
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as infile:
|
||||
for line_number, line in enumerate(infile, start=1):
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
try:
|
||||
json_obj = json.loads(line)
|
||||
context = json_obj.get('context')
|
||||
if context and context not in unique_contexts_dict:
|
||||
unique_contexts_dict[context] = None
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {filename}")
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"An error occurred while processing file {filename}: {e}")
|
||||
continue
|
||||
|
||||
unique_contexts_list = list(unique_contexts_dict.keys())
|
||||
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
|
||||
|
||||
try:
|
||||
with open(output_path, 'w', encoding='utf-8') as outfile:
|
||||
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
|
||||
print(f"Unique `context` entries have been saved to: {output_filename}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred while saving to the file {output_filename}: {e}")
|
||||
|
||||
print("All files have been processed.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-i', '--input_dir', type=str, default='../datasets')
|
||||
parser.add_argument('-o', '--output_dir', type=str, default='../datasets/unique_contexts')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
extract_unique_contexts(args.input_dir, args.output_dir)
|
32
reproduce/Step_1.py
Normal file
32
reproduce/Step_1.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
|
||||
from lightrag import LightRAG
|
||||
|
||||
def insert_text(rag, file_path):
|
||||
with open(file_path, mode='r') as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
retries = 0
|
||||
max_retries = 3
|
||||
while retries < max_retries:
|
||||
try:
|
||||
rag.insert(unique_contexts)
|
||||
break
|
||||
except Exception as e:
|
||||
retries += 1
|
||||
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
|
||||
time.sleep(10)
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
|
||||
cls = "agriculture"
|
||||
WORKING_DIR = "../{cls}"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
76
reproduce/Step_2.py
Normal file
76
reproduce/Step_2.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import os
|
||||
import json
|
||||
from openai import OpenAI
|
||||
from transformers import GPT2Tokenizer
|
||||
|
||||
def openai_complete_if_cache(
|
||||
model="gpt-4o", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
openai_client = OpenAI()
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
response = openai_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
def get_summary(context, tot_tokens=2000):
|
||||
tokens = tokenizer.tokenize(context)
|
||||
half_tokens = tot_tokens // 2
|
||||
|
||||
start_tokens = tokens[1000:1000 + half_tokens]
|
||||
end_tokens = tokens[-(1000 + half_tokens):1000]
|
||||
|
||||
summary_tokens = start_tokens + end_tokens
|
||||
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
clses = ['agriculture']
|
||||
for cls in clses:
|
||||
with open(f'../datasets/unique_contexts/{cls}_unique_contexts.json', mode='r') as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
summaries = [get_summary(context) for context in unique_contexts]
|
||||
|
||||
total_description = "\n\n".join(summaries)
|
||||
|
||||
prompt = f"""
|
||||
Given the following description of a dataset:
|
||||
|
||||
{total_description}
|
||||
|
||||
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
|
||||
|
||||
Output the results in the following structure:
|
||||
- User 1: [user description]
|
||||
- Task 1: [task description]
|
||||
- Question 1:
|
||||
- Question 2:
|
||||
- Question 3:
|
||||
- Question 4:
|
||||
- Question 5:
|
||||
- Task 2: [task description]
|
||||
...
|
||||
- Task 5: [task description]
|
||||
- User 2: [user description]
|
||||
...
|
||||
- User 5: [user description]
|
||||
...
|
||||
"""
|
||||
|
||||
result = openai_complete_if_cache(model='gpt-4o', prompt=prompt)
|
||||
|
||||
file_path = f"../datasets/questions/{cls}_questions.txt"
|
||||
with open(file_path, "w") as file:
|
||||
file.write(result)
|
||||
|
||||
print(f"{cls}_questions written to {file_path}")
|
62
reproduce/Step_3.py
Normal file
62
reproduce/Step_3.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import re
|
||||
import json
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from tqdm import tqdm
|
||||
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace('**', '')
|
||||
|
||||
queries = re.findall(r'- Question \d+: (.+)', data)
|
||||
|
||||
return queries
|
||||
|
||||
async def process_query(query_text, rag_instance, query_param):
|
||||
try:
|
||||
result, context = await rag_instance.aquery(query_text, param=query_param)
|
||||
return {"query": query_text, "result": result, "context": context}, None
|
||||
except Exception as e:
|
||||
return None, {"query": query_text, "error": str(e)}
|
||||
|
||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
except RuntimeError:
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
return loop
|
||||
|
||||
def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file, error_file):
|
||||
loop = always_get_an_event_loop()
|
||||
|
||||
with open(output_file, 'a', encoding='utf-8') as result_file, open(error_file, 'a', encoding='utf-8') as err_file:
|
||||
result_file.write("[\n")
|
||||
first_entry = True
|
||||
|
||||
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||||
result, error = loop.run_until_complete(process_query(query_text, rag_instance, query_param))
|
||||
|
||||
if result:
|
||||
if not first_entry:
|
||||
result_file.write(",\n")
|
||||
json.dump(result, result_file, ensure_ascii=False, indent=4)
|
||||
first_entry = False
|
||||
elif error:
|
||||
json.dump(error, err_file, ensure_ascii=False, indent=4)
|
||||
err_file.write("\n")
|
||||
|
||||
result_file.write("\n]")
|
||||
|
||||
if __name__ == "__main__":
|
||||
cls = "agriculture"
|
||||
mode = "hybird"
|
||||
WORKING_DIR = "../{cls}"
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
query_param = QueryParam(mode=mode)
|
||||
|
||||
queries = extract_queries(f"../datasets/questions/{cls}_questions.txt")
|
||||
run_queries_and_save_to_json(queries, rag, query_param, "result.json", "errors.json")
|
Reference in New Issue
Block a user