edge degree next almost done
This commit is contained in:
@@ -5,6 +5,8 @@ from dataclasses import dataclass
|
||||
from typing import Any, Union, cast
|
||||
import numpy as np
|
||||
from nano_vectordb import NanoVectorDB
|
||||
import inspect
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -26,14 +28,12 @@ PASSWORD = "your_password"
|
||||
@dataclass
|
||||
class GraphStorage(BaseGraphStorage):
|
||||
@staticmethod
|
||||
# def load_nx_graph(file_name) -> nx.Graph:
|
||||
# if os.path.exists(file_name):
|
||||
# return nx.read_graphml(file_name)
|
||||
# return None
|
||||
def load_nx_graph(file_name):
|
||||
print ("no preloading of graph with neo4j in production")
|
||||
|
||||
def __post_init__(self):
|
||||
# self._graph = preloaded_graph or nx.Graph()
|
||||
self._driver = GraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))
|
||||
self._driver = GraphDatabase.driver("neo4j+s://91fbae6c.databases.neo4j.io", auth=("neo4j", "KWKPXfXcClDbUlmDdGgIQhU5mL1N4E_2CJp2BDFbEbw"))
|
||||
self._node_embed_algorithms = {
|
||||
"node2vec": self._node2vec_embed,
|
||||
}
|
||||
@@ -41,79 +41,111 @@ class GraphStorage(BaseGraphStorage):
|
||||
async def index_done_callback(self):
|
||||
print ("KG successfully indexed.")
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
entity_name_label = node_id
|
||||
with self._driver.session() as session:
|
||||
return session.read_transaction(self._check_node_exists, entity_name_label)
|
||||
entity_name_label = node_id.strip('\"')
|
||||
|
||||
@staticmethod
|
||||
def _check_node_exists(tx, label):
|
||||
query = f"MATCH (n:{label}) RETURN count(n) > 0 AS node_exists"
|
||||
query = f"MATCH (n:`{label}`) RETURN count(n) > 0 AS node_exists"
|
||||
result = tx.run(query)
|
||||
return result.single()["node_exists"]
|
||||
single_result = result.single()
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["node_exists"]}'
|
||||
)
|
||||
|
||||
return single_result["node_exists"]
|
||||
|
||||
with self._driver.session() as session:
|
||||
return session.read_transaction(_check_node_exists, entity_name_label)
|
||||
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
entity_name_label_source = source_node_id
|
||||
entity_name_label_target = target_node_id
|
||||
#hard code relaitionship type
|
||||
with self._driver.session() as session:
|
||||
result = session.read_transaction(self._check_edge_existence, entity_name_label_source, entity_name_label_target)
|
||||
return result
|
||||
entity_name_label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _check_edge_existence(tx, label1, label2):
|
||||
query = (
|
||||
f"MATCH (a:{label1})-[r]-(b:{label2}) "
|
||||
f"MATCH (a:`{label1}`)-[r]-(b:`{label2}`) "
|
||||
"RETURN COUNT(r) > 0 AS edgeExists"
|
||||
)
|
||||
result = tx.run(query)
|
||||
return result.single()["edgeExists"]
|
||||
single_result = result.single()
|
||||
# if result.single() == None:
|
||||
# print (f"this should not happen: ---- {label1}/{label2} {query}")
|
||||
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["edgeExists"]}'
|
||||
)
|
||||
|
||||
return single_result["edgeExists"]
|
||||
def close(self):
|
||||
self._driver.close()
|
||||
self._driver.close()
|
||||
#hard code relaitionship type
|
||||
with self._driver.session() as session:
|
||||
result = session.read_transaction(_check_edge_existence, entity_name_label_source, entity_name_label_target)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||
entity_name_label = node_id
|
||||
entity_name_label = node_id.strip('\"')
|
||||
with self._driver.session() as session:
|
||||
result = session.run("MATCH (n:{entity_name_label}) RETURN n".format(entity_name_label=entity_name_label))
|
||||
query = "MATCH (n:`{entity_name_label}`) RETURN n".format(entity_name_label=entity_name_label)
|
||||
result = session.run(query)
|
||||
for record in result:
|
||||
return record["n"]
|
||||
result = record["n"]
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}'
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
entity_name_label = node_id
|
||||
with self._driver.session() as session:
|
||||
degree = self._find_node_degree(session, entity_name_label)
|
||||
return degree
|
||||
entity_name_label = node_id.strip('\"')
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _find_node_degree(session, label):
|
||||
with session.begin_transaction() as tx:
|
||||
result = tx.run("MATCH (n:`{label}`) RETURN n, size((n)--()) AS degree".format(label=label))
|
||||
# query = "MATCH (n:`{label}`) RETURN n, size((n)--()) AS degree".format(label=label)
|
||||
query = f"""
|
||||
MATCH (n:`{label}`)
|
||||
RETURN COUNT{{ (n)--() }} AS totalEdgeCount
|
||||
"""
|
||||
result = tx.run(query)
|
||||
record = result.single()
|
||||
if record:
|
||||
return record["degree"]
|
||||
if record:
|
||||
edge_count = record["totalEdgeCount"]
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}'
|
||||
)
|
||||
return edge_count
|
||||
else:
|
||||
return None
|
||||
|
||||
with self._driver.session() as session:
|
||||
degree = _find_node_degree(session, entity_name_label)
|
||||
return degree
|
||||
|
||||
|
||||
# degree = session.read_transaction(get_edge_degree, 1, 2)
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
entity_name__label_source = src_id
|
||||
entity_name_label_target = tgt_id
|
||||
entity_name__label_source = src_id.strip('\"')
|
||||
entity_name_label_target = tgt_id.strip('\"')
|
||||
with self._driver.session() as session:
|
||||
result = session.run(
|
||||
"""MATCH (n1:{node_label1})-[r]-(n2:{node_label2})
|
||||
RETURN count(r) AS degree"""
|
||||
.format(entity_name__label_source=entity_name__label_source, entity_name_label_target=entity_name_label_target)
|
||||
)
|
||||
record = result.single()
|
||||
query = """MATCH (n1:`{node_label1}`)-[r]-(n2:`{node_label2}`)
|
||||
RETURN count(r) AS degree""".format(entity_name__label_source=entity_name__label_source,
|
||||
entity_name_label_target=entity_name_label_target)
|
||||
|
||||
result = session.run(query)
|
||||
record = result.single()
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{record["degree"]}'
|
||||
)
|
||||
return record["degree"]
|
||||
|
||||
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
||||
entity_name__label_source = source_node_id
|
||||
entity_name_label_target = target_node_id
|
||||
entity_name__label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
"""
|
||||
Find all edges between nodes of two given labels
|
||||
|
||||
@@ -126,17 +158,109 @@ class GraphStorage(BaseGraphStorage):
|
||||
"""
|
||||
with self._driver.session() as session:
|
||||
query = f"""
|
||||
MATCH (source:{entity_name__label_source})-[r]-(target:{entity_name_label_target})
|
||||
MATCH (source:`{entity_name__label_source}`)-[r]-(target:`{entity_name_label_target}`)
|
||||
RETURN r
|
||||
"""
|
||||
|
||||
result = session.run(query)
|
||||
for logrecord in result:
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{logrecord["r"]}'
|
||||
)
|
||||
|
||||
|
||||
return [record["r"] for record in result]
|
||||
|
||||
|
||||
|
||||
#upsert_node
|
||||
async def get_node_edges(self, source_node_id: str):
|
||||
if self._graph.has_node(source_node_id):
|
||||
return list(self._graph.edges(source_node_id))
|
||||
return None
|
||||
|
||||
async def get_node_edges(self, source_node_id: str):
|
||||
node_label = source_node_id.strip('\"')
|
||||
|
||||
"""
|
||||
Retrieves all edges (relationships) for a particular node identified by its label and ID.
|
||||
|
||||
:param uri: Neo4j database URI
|
||||
:param username: Neo4j username
|
||||
:param password: Neo4j password
|
||||
:param node_label: Label of the node
|
||||
:param node_id: ID property of the node
|
||||
:return: List of dictionaries containing edge information
|
||||
"""
|
||||
|
||||
def fetch_edges(tx, label):
|
||||
query = f"""MATCH (n:`{label}`)
|
||||
OPTIONAL MATCH (n)-[r]-(connected)
|
||||
RETURN n, r, connected"""
|
||||
|
||||
results = tx.run(query)
|
||||
|
||||
edges = []
|
||||
for record in results:
|
||||
source_node = record['n']
|
||||
connected_node = record['connected']
|
||||
|
||||
source_label = list(source_node.labels)[0] if source_node.labels else None
|
||||
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
||||
|
||||
if source_label and target_label:
|
||||
print (f"appending: {[source_label, target_label]}")
|
||||
edges.append([source_label, target_label])
|
||||
|
||||
return edges
|
||||
|
||||
with self._driver.session() as session:
|
||||
edges = session.read_transaction(fetch_edges,node_label)
|
||||
return edges
|
||||
|
||||
|
||||
# try:
|
||||
# with self._driver.session() as session:
|
||||
# if self.has_node(node_label):
|
||||
# edges = session.read_transaction(fetch_edges,node_label)
|
||||
# return list(edges)
|
||||
# return edges
|
||||
# finally:
|
||||
# print ("consider closign driver here")
|
||||
# # driver.close()
|
||||
|
||||
from typing import List, Tuple
|
||||
async def get_node_connections(driver: GraphDatabase.driver, label: str) -> List[Tuple[str, str]]:
|
||||
def run_query(tx):
|
||||
query = f"""
|
||||
MATCH (n:`{label}`)
|
||||
OPTIONAL MATCH (n)-[r]-(connected)
|
||||
RETURN n, r, connected
|
||||
"""
|
||||
results = tx.run(query)
|
||||
|
||||
connections = []
|
||||
for record in results:
|
||||
source_node = record['n']
|
||||
connected_node = record['connected']
|
||||
|
||||
source_label = list(source_node.labels)[0] if source_node.labels else None
|
||||
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
||||
|
||||
if source_label and target_label:
|
||||
connections.append((source_label, target_label))
|
||||
|
||||
return connections
|
||||
|
||||
with driver.session() as session:
|
||||
return session.read_transaction(run_query)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#upsert_node
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
||||
label = node_id
|
||||
label = node_id.strip('\"')
|
||||
properties = node_data
|
||||
"""
|
||||
Upsert a node with the given label and properties within a transaction.
|
||||
@@ -152,21 +276,9 @@ class GraphStorage(BaseGraphStorage):
|
||||
Returns:
|
||||
Dictionary containing the node's properties after upsert, or None if operation fails
|
||||
"""
|
||||
with self._driver.session() as session:
|
||||
# Execute the upsert within a transaction
|
||||
result = session.execute_write(
|
||||
self._do_upsert,
|
||||
label,
|
||||
properties
|
||||
)
|
||||
return result
|
||||
|
||||
def _do_upsert(tx, label: str, properties: dict[str, Any]):
|
||||
|
||||
@staticmethod
|
||||
def _do_upsert(tx: Transaction, label: str, properties: Dict[str, Any]):
|
||||
"""
|
||||
Static method to perform the actual upsert operation within a transaction
|
||||
|
||||
"""
|
||||
Args:
|
||||
tx: Neo4j transaction object
|
||||
label: The node label to search for and apply
|
||||
@@ -175,44 +287,39 @@ class GraphStorage(BaseGraphStorage):
|
||||
Returns:
|
||||
Dictionary containing the node's properties after upsert, or None if operation fails
|
||||
"""
|
||||
# Create the dynamic property string for SET clause
|
||||
property_string = ", ".join([
|
||||
f"n.{key} = ${key}"
|
||||
for key in properties.keys()
|
||||
])
|
||||
|
||||
# Cypher query that either matches existing node or creates new one
|
||||
|
||||
query = f"""
|
||||
MATCH (n:{label})
|
||||
WITH n LIMIT 1
|
||||
CALL {{
|
||||
WITH n
|
||||
WHERE n IS NOT NULL
|
||||
SET {property_string}
|
||||
RETURN n
|
||||
UNION
|
||||
WITH n
|
||||
WHERE n IS NULL
|
||||
CREATE (n:{label})
|
||||
SET {property_string}
|
||||
RETURN n
|
||||
}}
|
||||
MERGE (n:`{label}`)
|
||||
SET n += $properties
|
||||
RETURN n
|
||||
"""
|
||||
|
||||
# Execute the query with properties as parameters
|
||||
result = tx.run(query, properties)
|
||||
record = result.single()
|
||||
|
||||
if record:
|
||||
return dict(record["n"])
|
||||
return None
|
||||
|
||||
|
||||
# Execute the query with properties as parameters
|
||||
# with session.begin_transaction() as tx:
|
||||
result = tx.run(query, properties=properties)
|
||||
record = result.single()
|
||||
if record:
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{dict(record["n"])}'
|
||||
)
|
||||
return dict(record["n"])
|
||||
return None
|
||||
|
||||
|
||||
with self._driver.session() as session:
|
||||
with session.begin_transaction() as tx:
|
||||
try:
|
||||
result = _do_upsert(tx,label,properties)
|
||||
tx.commit()
|
||||
return result
|
||||
except Exception as e:
|
||||
raise # roll back
|
||||
|
||||
|
||||
|
||||
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]) -> None:
|
||||
source_node_label = source_node_id
|
||||
target_node_label = target_node_id
|
||||
source_node_label = source_node_id.strip('\"')
|
||||
target_node_label = target_node_id.strip('\"')
|
||||
edge_properties = edge_data
|
||||
"""
|
||||
Upsert an edge and its properties between two nodes identified by their labels.
|
||||
|
||||
@@ -221,16 +328,10 @@ class GraphStorage(BaseGraphStorage):
|
||||
target_node_label (str): Label of the target node (used as identifier)
|
||||
edge_properties (dict): Dictionary of properties to set on the edge
|
||||
"""
|
||||
with self._driver.session() as session:
|
||||
session.execute_write(
|
||||
self._do_upsert_edge,
|
||||
source_node_label,
|
||||
target_node_label,
|
||||
edge_data
|
||||
)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _do_upsert_edge(tx, source_node_label: str, target_node_label: str, edge_properties: Dict[str, Any]) -> None:
|
||||
|
||||
def _do_upsert_edge(tx, source_node_label: str, target_node_label: str, edge_properties: dict[str, Any]) -> None:
|
||||
"""
|
||||
Static method to perform the edge upsert within a transaction.
|
||||
|
||||
@@ -240,43 +341,58 @@ class GraphStorage(BaseGraphStorage):
|
||||
3. Set all properties on the relationship, updating existing ones and adding new ones
|
||||
"""
|
||||
# Convert edge properties to Cypher parameter string
|
||||
props_string = ", ".join(f"r.{key} = ${key}" for key in edge_properties.keys())
|
||||
|
||||
query = """
|
||||
MATCH (source)
|
||||
WHERE source.label = $source_node_label
|
||||
MATCH (target)
|
||||
WHERE target.label = $target_node_label
|
||||
# props_string = ", ".join(f"r.{key} = ${key}" for key in edge_properties.keys())
|
||||
|
||||
# """.format(props_string)
|
||||
query = f"""
|
||||
MATCH (source:`{source_node_label}`)
|
||||
WITH source
|
||||
MATCH (target:`{target_node_label}`)
|
||||
MERGE (source)-[r:DIRECTED]->(target)
|
||||
SET {}
|
||||
""".format(props_string)
|
||||
SET r += $properties
|
||||
RETURN r
|
||||
"""
|
||||
|
||||
# Prepare parameters dictionary
|
||||
params = {
|
||||
"source_node_label": source_node_label,
|
||||
"target_node_label": target_node_label,
|
||||
**edge_properties
|
||||
}
|
||||
result = tx.run(query, properties=edge_properties)
|
||||
logger.info(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{None}'
|
||||
)
|
||||
return result.single()
|
||||
|
||||
# Execute the query
|
||||
tx.run(query, params)
|
||||
|
||||
with self._driver.session() as session:
|
||||
session.execute_write(
|
||||
_do_upsert_edge,
|
||||
source_node_label,
|
||||
target_node_label,
|
||||
edge_properties
|
||||
)
|
||||
# return result
|
||||
|
||||
async def _node2vec_embed(self):
|
||||
# async def _node2vec_embed(self):
|
||||
with self._driver.session() as session:
|
||||
#Define the Cypher query
|
||||
options = self.global_config["node2vec_params"]
|
||||
query = f"""CALL gds.node2vec.stream('myGraph', {options}) # **options
|
||||
YIELD nodeId, embedding
|
||||
RETURN nodeId, embedding"""
|
||||
logger.info(f"building embeddings with options {options}")
|
||||
query = f"""CALL gds.node2vec.write('91fbae6c', {
|
||||
options
|
||||
})
|
||||
YIELD nodeId, labels, embedding
|
||||
RETURN
|
||||
nodeId AS id,
|
||||
labels[0] AS distinctLabel,
|
||||
embedding AS nodeToVecEmbedding
|
||||
"""
|
||||
# Run the query and process the results
|
||||
results = session.run(query)
|
||||
embeddings = []
|
||||
node_labels = []
|
||||
for record in results:
|
||||
node_id = record["nodeId"]
|
||||
embedding = record["embedding"]
|
||||
print(f"Node ID: {node_id}, Embedding: {embedding}")
|
||||
#need to return two lists here.
|
||||
|
||||
|
||||
node_id = record["id"]
|
||||
embedding = record["nodeToVecEmbedding"]
|
||||
label = record["distinctLabel"]
|
||||
print(f"Node id/label: {label}/{node_id}, Embedding: {embedding}")
|
||||
embeddings.append(embedding)
|
||||
node_labels.append(label)
|
||||
return embeddings, node_labels
|
||||
|
||||
|
@@ -103,7 +103,7 @@ class LightRAG:
|
||||
# module = importlib.import_module('kg.neo4j')
|
||||
# Neo4JStorage = getattr(module, 'GraphStorage')
|
||||
|
||||
if True==False:
|
||||
if True==True:
|
||||
graph_storage_cls: Type[BaseGraphStorage] = Neo4JStorage
|
||||
else:
|
||||
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
|
||||
|
@@ -73,7 +73,7 @@ async def openai_complete_if_cache(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
#kw_
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
wait=wait_exponential(multiplier=1, min=10, max=60),
|
||||
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
)
|
||||
|
5
neo4jWorkDir/kv_store_full_docs.json
Normal file
5
neo4jWorkDir/kv_store_full_docs.json
Normal file
File diff suppressed because one or more lines are too long
354
neo4jWorkDir/kv_store_llm_response_cache.json
Normal file
354
neo4jWorkDir/kv_store_llm_response_cache.json
Normal file
File diff suppressed because one or more lines are too long
254
neo4jWorkDir/kv_store_text_chunks.json
Normal file
254
neo4jWorkDir/kv_store_text_chunks.json
Normal file
File diff suppressed because one or more lines are too long
10202
neo4jWorkDir/lightrag.log
Normal file
10202
neo4jWorkDir/lightrag.log
Normal file
File diff suppressed because it is too large
Load Diff
1
neo4jWorkDir/vdb_chunks.json
Normal file
1
neo4jWorkDir/vdb_chunks.json
Normal file
File diff suppressed because one or more lines are too long
1
neo4jWorkDir/vdb_entities.json
Normal file
1
neo4jWorkDir/vdb_entities.json
Normal file
File diff suppressed because one or more lines are too long
1
neo4jWorkDir/vdb_relationships.json
Normal file
1
neo4jWorkDir/vdb_relationships.json
Normal file
File diff suppressed because one or more lines are too long
36
testkg.py
Normal file
36
testkg.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./neo4jWorkDir"
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
Reference in New Issue
Block a user