Add HF Support

This commit is contained in:
TianyuFan0504
2024-10-14 19:41:07 +08:00
parent 665f50c8fe
commit 741953c34b
3 changed files with 148 additions and 19 deletions

View File

@@ -5,7 +5,7 @@ from datetime import datetime
from functools import partial
from typing import Type, cast
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding,hf_model,hf_embedding
from .operate import (
chunking_by_token_size,
extract_entities,
@@ -77,12 +77,13 @@ class LightRAG:
)
# text embedding
embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
embedding_func: EmbeddingFunc = field(default_factory=lambda: hf_embedding)#openai_embedding
embedding_batch_num: int = 32
embedding_func_max_async: int = 16
# LLM
llm_model_func: callable = gpt_4o_mini_complete
llm_model_func: callable = hf_model#gpt_4o_mini_complete
llm_model_name: str = 'meta-llama/Llama-3.2-1B-Instruct'#'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16

View File

@@ -7,10 +7,12 @@ from tenacity import (
wait_exponential,
retry_if_exception_type,
)
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
import torch
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
import copy
os.environ["TOKENIZERS_PARALLELISM"] = "false"
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
@@ -42,6 +44,52 @@ async def openai_complete_if_cache(
)
return response.choices[0].message.content
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = model
hf_tokenizer = AutoTokenizer.from_pretrained(model_name,device_map = 'auto')
if hf_tokenizer.pad_token == None:
# print("use eos token")
hf_tokenizer.pad_token = hf_tokenizer.eos_token
hf_model = AutoModelForCausalLM.from_pretrained(model_name,device_map = 'auto')
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
input_prompt = ''
try:
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
try:
ori_message = copy.deepcopy(messages)
if messages[0]['role'] == "system":
messages[1]['content'] = "<system>" + messages[0]['content'] + "</system>\n" + messages[1]['content']
messages = messages[1:]
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
len_message = len(ori_message)
for msgid in range(len_message):
input_prompt =input_prompt+ '<'+ori_message[msgid]['role']+'>'+ori_message[msgid]['content']+'</'+ori_message[msgid]['role']+'>\n'
input_ids = hf_tokenizer(input_prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
output = hf_model.generate(**input_ids, max_new_tokens=200, num_return_sequences=1,early_stopping = True)
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response_text, "model": model}}
)
return response_text
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -65,6 +113,20 @@ async def gpt_4o_mini_complete(
**kwargs,
)
async def hf_model(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
input_string = kwargs.get('model_name', 'google/gemma-2-2b-it')
return await hf_model_if_cache(
input_string,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
@@ -78,6 +140,24 @@ async def openai_embedding(texts: list[str]) -> np.ndarray:
)
return np.array([dp.embedding for dp in response.data])
global EMBED_MODEL
global tokenizer
EMBED_MODEL = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
@wrap_embedding_func_with_attrs(
embedding_dim=384,
max_token_size=5000,
)
async def hf_embedding(texts: list[str]) -> np.ndarray:
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
with torch.no_grad():
outputs = EMBED_MODEL(input_ids)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.detach().numpy()
if __name__ == "__main__":
import asyncio

View File

@@ -3,7 +3,7 @@ import json
import re
from typing import Union
from collections import Counter, defaultdict
import warnings
from .utils import (
logger,
clean_str,
@@ -398,10 +398,15 @@ async def local_query(
keywords = keywords_data.get("low_level_keywords", [])
keywords = ', '.join(keywords)
except json.JSONDecodeError as e:
try:
result = result.replace(kw_prompt[:-1],'').replace('user','').replace('model','').strip().strip('```').strip('json')
keywords_data = json.loads(result)
keywords = keywords_data.get("low_level_keywords", [])
keywords = ', '.join(keywords)
# Handle parsing error
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
context = await _build_local_query_context(
keywords,
knowledge_graph_inst,
@@ -421,6 +426,9 @@ async def local_query(
query,
system_prompt=sys_prompt,
)
if len(response)>len(sys_prompt):
response = response.replace(sys_prompt,'').replace('user','').replace('model','').replace(query,'').replace('<system>','').replace('</system>','').strip()
return response
async def _build_local_query_context(
@@ -617,9 +625,16 @@ async def global_query(
keywords = keywords_data.get("high_level_keywords", [])
keywords = ', '.join(keywords)
except json.JSONDecodeError as e:
# Handle parsing error
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
try:
result = result.replace(kw_prompt[:-1],'').replace('user','').replace('model','').strip().strip('```').strip('json')
keywords_data = json.loads(result)
keywords = keywords_data.get("high_level_keywords", [])
keywords = ', '.join(keywords)
except json.JSONDecodeError as e:
# Handle parsing error
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
context = await _build_global_query_context(
keywords,
@@ -643,6 +658,9 @@ async def global_query(
query,
system_prompt=sys_prompt,
)
if len(response)>len(sys_prompt):
response = response.replace(sys_prompt,'').replace('user','').replace('model','').replace(query,'').replace('<system>','').replace('</system>','').strip()
return response
async def _build_global_query_context(
@@ -822,8 +840,8 @@ async def hybird_query(
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=query)
result = await use_model_func(kw_prompt)
try:
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
@@ -831,10 +849,18 @@ async def hybird_query(
hl_keywords = ', '.join(hl_keywords)
ll_keywords = ', '.join(ll_keywords)
except json.JSONDecodeError as e:
try:
result = result.replace(kw_prompt[:-1],'').replace('user','').replace('model','').strip().strip('```').strip('json')
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
hl_keywords = ', '.join(hl_keywords)
ll_keywords = ', '.join(ll_keywords)
# Handle parsing error
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
low_level_context = await _build_local_query_context(
ll_keywords,
knowledge_graph_inst,
@@ -851,7 +877,7 @@ async def hybird_query(
text_chunks_db,
query_param,
)
context = combine_contexts(high_level_context, low_level_context)
if query_param.only_need_context:
@@ -867,10 +893,13 @@ async def hybird_query(
query,
system_prompt=sys_prompt,
)
if len(response)>len(sys_prompt):
response = response.replace(sys_prompt,'').replace('user','').replace('model','').replace(query,'').replace('<system>','').replace('</system>','').strip()
return response
def combine_contexts(high_level_context, low_level_context):
# Function to extract entities, relationships, and sources from context strings
def extract_sections(context):
entities_match = re.search(r'-----Entities-----\s*```csv\s*(.*?)\s*```', context, re.DOTALL)
relationships_match = re.search(r'-----Relationships-----\s*```csv\s*(.*?)\s*```', context, re.DOTALL)
@@ -883,8 +912,21 @@ def combine_contexts(high_level_context, low_level_context):
return entities, relationships, sources
# Extract sections from both contexts
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)
if high_level_context==None:
warnings.warn("High Level context is None. Return empty High entity/relationship/source")
hl_entities, hl_relationships, hl_sources = '','',''
else:
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)
if low_level_context==None:
warnings.warn("Low Level context is None. Return empty Low entity/relationship/source")
ll_entities, ll_relationships, ll_sources = '','',''
else:
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)
# Combine and deduplicate the entities
combined_entities_set = set(filter(None, hl_entities.strip().split('\n') + ll_entities.strip().split('\n')))
@@ -917,6 +959,7 @@ async def naive_query(
global_config: dict,
):
use_model_func = global_config["llm_model_func"]
use_model_name = global_config['llm_model_name']
results = await chunks_vdb.query(query, top_k=query_param.top_k)
if not len(results):
return PROMPTS["fail_response"]
@@ -939,6 +982,11 @@ async def naive_query(
response = await use_model_func(
query,
system_prompt=sys_prompt,
model_name = use_model_name
)
if len(response)>len(sys_prompt):
response = response[len(sys_prompt):].replace(sys_prompt,'').replace('user','').replace('model','').replace(query,'').replace('<system>','').replace('</system>','').strip()
return response