Add HF Support
This commit is contained in:
@@ -7,10 +7,12 @@ from tenacity import (
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
from .base import BaseKVStorage
|
||||
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
|
||||
|
||||
import copy
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
@@ -42,6 +44,52 @@ async def openai_complete_if_cache(
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
async def hf_model_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
model_name = model
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(model_name,device_map = 'auto')
|
||||
if hf_tokenizer.pad_token == None:
|
||||
# print("use eos token")
|
||||
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(model_name,device_map = 'auto')
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash(model, messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
input_prompt = ''
|
||||
try:
|
||||
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
except:
|
||||
try:
|
||||
ori_message = copy.deepcopy(messages)
|
||||
if messages[0]['role'] == "system":
|
||||
messages[1]['content'] = "<system>" + messages[0]['content'] + "</system>\n" + messages[1]['content']
|
||||
messages = messages[1:]
|
||||
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
except:
|
||||
len_message = len(ori_message)
|
||||
for msgid in range(len_message):
|
||||
input_prompt =input_prompt+ '<'+ori_message[msgid]['role']+'>'+ori_message[msgid]['content']+'</'+ori_message[msgid]['role']+'>\n'
|
||||
|
||||
input_ids = hf_tokenizer(input_prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
|
||||
output = hf_model.generate(**input_ids, max_new_tokens=200, num_return_sequences=1,early_stopping = True)
|
||||
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert(
|
||||
{args_hash: {"return": response_text, "model": model}}
|
||||
)
|
||||
return response_text
|
||||
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -65,6 +113,20 @@ async def gpt_4o_mini_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
async def hf_model(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
input_string = kwargs.get('model_name', 'google/gemma-2-2b-it')
|
||||
return await hf_model_if_cache(
|
||||
input_string,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
@@ -78,6 +140,24 @@ async def openai_embedding(texts: list[str]) -> np.ndarray:
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
|
||||
|
||||
|
||||
global EMBED_MODEL
|
||||
global tokenizer
|
||||
EMBED_MODEL = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||
@wrap_embedding_func_with_attrs(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
)
|
||||
async def hf_embedding(texts: list[str]) -> np.ndarray:
|
||||
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
||||
with torch.no_grad():
|
||||
outputs = EMBED_MODEL(input_ids)
|
||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||
return embeddings.detach().numpy()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
|
Reference in New Issue
Block a user