fix examples
This commit is contained in:
@@ -48,6 +48,14 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
os.environ["ORACLE_USER"] = ""
|
||||
os.environ["ORACLE_PASSWORD"] = ""
|
||||
os.environ["ORACLE_DSN"] = ""
|
||||
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
||||
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
||||
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
||||
os.environ["ORACLE_WORKSPACE"] = "company"
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
@@ -89,20 +97,6 @@ async def init():
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "",
|
||||
"password": "",
|
||||
"dsn": "",
|
||||
"config_dir": "path_to_config_dir",
|
||||
"wallet_location": "path_to_wallet_location",
|
||||
"wallet_password": "wallet_password",
|
||||
"workspace": "company",
|
||||
} # specify which docs you want to store and query
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -121,11 +115,6 @@ async def init():
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.key_string_value_json_storage_cls.db = oracle_db
|
||||
rag.vector_db_storage_cls.db = oracle_db
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
|
@@ -26,6 +26,14 @@ MAX_TOKENS = 4000
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
os.environ["ORACLE_USER"] = "username"
|
||||
os.environ["ORACLE_PASSWORD"] = "xxxxxxxxx"
|
||||
os.environ["ORACLE_DSN"] = "xxxxxxx_medium"
|
||||
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
||||
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
||||
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
||||
os.environ["ORACLE_WORKSPACE"] = "company"
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
@@ -63,26 +71,6 @@ async def main():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Create Oracle DB connection
|
||||
# The `config` parameter is the connection configuration of Oracle DB
|
||||
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "username",
|
||||
"password": "xxxxxxxxx",
|
||||
"dsn": "xxxxxxx_medium",
|
||||
"config_dir": "dir/path/to/oracle/config",
|
||||
"wallet_location": "dir/path/to/oracle/wallet",
|
||||
"wallet_password": "xxxxxxxxx",
|
||||
"workspace": "company", # specify which docs you want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -112,26 +100,6 @@ async def main():
|
||||
},
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
|
||||
for storage in [
|
||||
rag.vector_db_storage_cls,
|
||||
rag.graph_storage_cls,
|
||||
rag.doc_status,
|
||||
rag.full_docs,
|
||||
rag.text_chunks,
|
||||
rag.llm_response_cache,
|
||||
rag.key_string_value_json_storage_cls,
|
||||
rag.chunks_vdb,
|
||||
rag.relationships_vdb,
|
||||
rag.entities_vdb,
|
||||
rag.graph_storage_cls,
|
||||
rag.chunk_entity_relation_graph,
|
||||
rag.llm_response_cache,
|
||||
]:
|
||||
# set client
|
||||
storage.db = oracle_db
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
all_text = f.read()
|
||||
|
@@ -17,11 +17,11 @@ APIKEY = ""
|
||||
CHATMODEL = ""
|
||||
EMBEDMODEL = ""
|
||||
|
||||
TIDB_HOST = ""
|
||||
TIDB_PORT = ""
|
||||
TIDB_USER = ""
|
||||
TIDB_PASSWORD = ""
|
||||
TIDB_DATABASE = "lightrag"
|
||||
os.environ["TIDB_HOST"] = ""
|
||||
os.environ["TIDB_PORT"] = ""
|
||||
os.environ["TIDB_USER"] = ""
|
||||
os.environ["TIDB_PASSWORD"] = ""
|
||||
os.environ["TIDB_DATABASE"] = "lightrag"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -62,21 +62,6 @@ async def main():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Create TiDB DB connection
|
||||
tidb = TiDB(
|
||||
config={
|
||||
"host": TIDB_HOST,
|
||||
"port": TIDB_PORT,
|
||||
"user": TIDB_USER,
|
||||
"password": TIDB_PASSWORD,
|
||||
"database": TIDB_DATABASE,
|
||||
"workspace": "company", # specify which docs you want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
# Check if TiDB DB tables exist, if not, tables will be created
|
||||
await tidb.check_tables()
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use TiDB DB as the KV/vector
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -95,15 +80,6 @@ async def main():
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
if rag.llm_response_cache:
|
||||
rag.llm_response_cache.db = tidb
|
||||
rag.full_docs.db = tidb
|
||||
rag.text_chunks.db = tidb
|
||||
rag.entities_vdb.db = tidb
|
||||
rag.relationships_vdb.db = tidb
|
||||
rag.chunks_vdb.db = tidb
|
||||
rag.chunk_entity_relation_graph.db = tidb
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -22,22 +22,14 @@ if not os.path.exists(WORKING_DIR):
|
||||
# AGE
|
||||
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||
|
||||
postgres_db = PostgreSQLDB(
|
||||
config={
|
||||
"host": "localhost",
|
||||
"port": 15432,
|
||||
"user": "rag",
|
||||
"password": "rag",
|
||||
"database": "rag",
|
||||
}
|
||||
)
|
||||
os.environ["POSTGRES_HOST"] = "localhost"
|
||||
os.environ["POSTGRES_PORT"] = "15432"
|
||||
os.environ["POSTGRES_USER"] = "rag"
|
||||
os.environ["POSTGRES_PASSWORD"] = "rag"
|
||||
os.environ["POSTGRES_DATABASE"] = "rag"
|
||||
|
||||
|
||||
async def main():
|
||||
await postgres_db.initdb()
|
||||
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
||||
await postgres_db.check_tables()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
@@ -57,17 +49,7 @@ async def main():
|
||||
graph_storage="PGGraphStorage",
|
||||
vector_storage="PGVectorStorage",
|
||||
)
|
||||
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.doc_status.db = postgres_db
|
||||
rag.full_docs.db = postgres_db
|
||||
rag.text_chunks.db = postgres_db
|
||||
rag.llm_response_cache.db = postgres_db
|
||||
rag.key_string_value_json_storage_cls.db = postgres_db
|
||||
rag.chunks_vdb.db = postgres_db
|
||||
rag.relationships_vdb.db = postgres_db
|
||||
rag.entities_vdb.db = postgres_db
|
||||
rag.graph_storage_cls.db = postgres_db
|
||||
rag.chunk_entity_relation_graph.db = postgres_db
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
|
||||
|
Reference in New Issue
Block a user