fix examples

This commit is contained in:
ArnoChen
2025-02-19 04:12:16 +08:00
parent e194e04226
commit 7a970451b9
4 changed files with 27 additions and 112 deletions

View File

@@ -17,11 +17,11 @@ APIKEY = ""
CHATMODEL = ""
EMBEDMODEL = ""
TIDB_HOST = ""
TIDB_PORT = ""
TIDB_USER = ""
TIDB_PASSWORD = ""
TIDB_DATABASE = "lightrag"
os.environ["TIDB_HOST"] = ""
os.environ["TIDB_PORT"] = ""
os.environ["TIDB_USER"] = ""
os.environ["TIDB_PASSWORD"] = ""
os.environ["TIDB_DATABASE"] = "lightrag"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
@@ -62,21 +62,6 @@ async def main():
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
# Create TiDB DB connection
tidb = TiDB(
config={
"host": TIDB_HOST,
"port": TIDB_PORT,
"user": TIDB_USER,
"password": TIDB_PASSWORD,
"database": TIDB_DATABASE,
"workspace": "company", # specify which docs you want to store and query
}
)
# Check if TiDB DB tables exist, if not, tables will be created
await tidb.check_tables()
# Initialize LightRAG
# We use TiDB DB as the KV/vector
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
@@ -95,15 +80,6 @@ async def main():
graph_storage="TiDBGraphStorage",
)
if rag.llm_response_cache:
rag.llm_response_cache.db = tidb
rag.full_docs.db = tidb
rag.text_chunks.db = tidb
rag.entities_vdb.db = tidb
rag.relationships_vdb.db = tidb
rag.chunks_vdb.db = tidb
rag.chunk_entity_relation_graph.db = tidb
# Extract and Insert into LightRAG storage
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())