Merge branch 'main' into feat_login-jwt
This commit is contained in:
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@@ -0,0 +1 @@
|
||||
recursive-include lightrag/api/webui *
|
109
README.md
109
README.md
@@ -106,6 +106,9 @@ import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
@@ -344,6 +347,10 @@ from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_i
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
# Setup log handler for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
@@ -498,44 +505,58 @@ rag.query_with_separate_keyword_extraction(
|
||||
|
||||
```python
|
||||
custom_kg = {
|
||||
"chunks": [
|
||||
{
|
||||
"content": "Alice and Bob are collaborating on quantum computing research.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "CompanyA",
|
||||
"entity_type": "Organization",
|
||||
"description": "A major technology company",
|
||||
"source_id": "Source1"
|
||||
"entity_name": "Alice",
|
||||
"entity_type": "person",
|
||||
"description": "Alice is a researcher specializing in quantum physics.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "ProductX",
|
||||
"entity_type": "Product",
|
||||
"description": "A popular product developed by CompanyA",
|
||||
"source_id": "Source1"
|
||||
"entity_name": "Bob",
|
||||
"entity_type": "person",
|
||||
"description": "Bob is a mathematician.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Quantum Computing",
|
||||
"entity_type": "technology",
|
||||
"description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "CompanyA",
|
||||
"tgt_id": "ProductX",
|
||||
"description": "CompanyA develops ProductX",
|
||||
"keywords": "develop, produce",
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Bob",
|
||||
"description": "Alice and Bob are research partners.",
|
||||
"keywords": "collaboration research",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source1"
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Alice conducts research on quantum computing.",
|
||||
"keywords": "research expertise",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Bob",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Bob researches quantum computing.",
|
||||
"keywords": "research application",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"chunks": [
|
||||
{
|
||||
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
|
||||
"source_id": "Source1",
|
||||
},
|
||||
{
|
||||
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
|
||||
"source_id": "Source2",
|
||||
},
|
||||
{
|
||||
"content": "None",
|
||||
"source_id": "UNKNOWN",
|
||||
},
|
||||
],
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
@@ -640,17 +661,27 @@ export NEO4J_URI="neo4j://localhost:7687"
|
||||
export NEO4J_USERNAME="neo4j"
|
||||
export NEO4J_PASSWORD="password"
|
||||
|
||||
# Setup logger for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
# When you launch the project be sure to override the default KG: NetworkX
|
||||
# by specifying kg="Neo4JStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
# Initialize LightRAG with Neo4J implementation.
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage", #<-----------override KG default
|
||||
log_level="DEBUG" #<-----------override log_level default
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage", #<-----------override KG default
|
||||
)
|
||||
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
# Initialize pipeline status for document processing
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
```
|
||||
see test_neo4j.py for a working example.
|
||||
|
||||
@@ -754,7 +785,8 @@ rag.delete_by_doc_id("doc_id")
|
||||
|
||||
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
|
||||
|
||||
### Create Entities and Relations
|
||||
<details>
|
||||
<summary> <b>Create Entities and Relations</b> </summary>
|
||||
|
||||
```python
|
||||
# Create new entity
|
||||
@@ -776,8 +808,10 @@ relation = rag.create_relation("Google", "Gmail", {
|
||||
"weight": 2.0
|
||||
})
|
||||
```
|
||||
</details>
|
||||
|
||||
### Edit Entities and Relations
|
||||
<details>
|
||||
<summary> <b>Edit Entities and Relations</b> </summary>
|
||||
|
||||
```python
|
||||
# Edit an existing entity
|
||||
@@ -799,6 +833,7 @@ updated_relation = rag.edit_relation("Google", "Google Mail", {
|
||||
"weight": 3.0
|
||||
})
|
||||
```
|
||||
</details>
|
||||
|
||||
All operations are available in both synchronous and asynchronous versions. The asynchronous versions have the prefix "a" (e.g., `acreate_entity`, `aedit_relation`).
|
||||
|
||||
@@ -859,7 +894,6 @@ Valid modes are:
|
||||
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
|
||||
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
|
||||
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
|
||||
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
|
||||
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
||||
@@ -881,7 +915,6 @@ Valid modes are:
|
||||
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
|
||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||
|**log\_dir** | `str` | Directory to store logs. | `./` |
|
||||
|
||||
</details>
|
||||
|
||||
|
@@ -48,7 +48,7 @@
|
||||
# CHUNK_OVERLAP_SIZE=100
|
||||
# MAX_TOKENS=32768 # Max tokens send to LLM for summarization
|
||||
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
||||
# SUMMARY_LANGUAGE=English
|
||||
# LANGUAGE=English
|
||||
# MAX_EMBED_TOKENS=8192
|
||||
|
||||
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
||||
|
@@ -81,34 +81,46 @@ asyncio.run(test_funcs())
|
||||
|
||||
embedding_dimension = 3072
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
rag.initialize_storages()
|
||||
initialize_pipeline_status()
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
return rag
|
||||
|
||||
query_text = "What are the main themes?"
|
||||
|
||||
print("Result (Naive):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
print("\nResult (Local):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="local")))
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
print("\nResult (Global):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
|
||||
print("\nResult (Hybrid):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
query_text = "What are the main themes?"
|
||||
|
||||
print("Result (Naive):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
||||
|
||||
print("\nResult (Local):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="local")))
|
||||
|
||||
print("\nResult (Global):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||
|
||||
print("\nResult (Hybrid):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -53,3 +53,7 @@ def main():
|
||||
"What are the top themes in this story?", param=QueryParam(mode=mode)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -125,7 +125,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# reading file
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -77,7 +77,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -81,7 +81,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -107,7 +107,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -87,7 +87,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
@@ -59,7 +59,7 @@ async def initialize_rag():
|
||||
|
||||
async def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
|
@@ -102,7 +102,7 @@ async def initialize_rag():
|
||||
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
||||
async def run_example():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||
|
||||
__version__ = "1.2.3"
|
||||
__version__ = "1.2.4"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -2,12 +2,15 @@
|
||||
import os
|
||||
import logging
|
||||
from lightrag.kg.shared_storage import finalize_share_data
|
||||
from lightrag.api.lightrag_server import LightragPathFilter
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
# Get log directory path from environment variable
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
@@ -108,6 +111,9 @@ def on_starting(server):
|
||||
except ImportError:
|
||||
print("psutil not installed, skipping memory usage reporting")
|
||||
|
||||
# Log the location of the LightRAG log file
|
||||
print(f"LightRAG log file: {log_file_path}\n")
|
||||
|
||||
print("Gunicorn initialization complete, forking workers...\n")
|
||||
|
||||
|
||||
@@ -134,51 +140,18 @@ def post_fork(server, worker):
|
||||
Executed after a worker has been forked.
|
||||
This is a good place to set up worker-specific configurations.
|
||||
"""
|
||||
# Configure formatters
|
||||
detailed_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||
|
||||
def setup_logger(logger_name: str, level: str = "INFO", add_filter: bool = False):
|
||||
"""Set up a logger with console and file handlers"""
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.setLevel(level)
|
||||
logger_instance.handlers = [] # Clear existing handlers
|
||||
logger_instance.propagate = False
|
||||
|
||||
# Add console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(simple_formatter)
|
||||
console_handler.setLevel(level)
|
||||
logger_instance.addHandler(console_handler)
|
||||
|
||||
# Add file handler
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
filename=log_file_path,
|
||||
maxBytes=log_max_bytes,
|
||||
backupCount=log_backup_count,
|
||||
encoding="utf-8",
|
||||
)
|
||||
file_handler.setFormatter(detailed_formatter)
|
||||
file_handler.setLevel(level)
|
||||
logger_instance.addHandler(file_handler)
|
||||
|
||||
# Add path filter if requested
|
||||
if add_filter:
|
||||
path_filter = LightragPathFilter()
|
||||
logger_instance.addFilter(path_filter)
|
||||
|
||||
# Set up main loggers
|
||||
log_level = loglevel.upper() if loglevel else "INFO"
|
||||
setup_logger("uvicorn", log_level)
|
||||
setup_logger("uvicorn.access", log_level, add_filter=True)
|
||||
setup_logger("lightrag", log_level, add_filter=True)
|
||||
setup_logger("uvicorn", log_level, add_filter=False, log_file_path=log_file_path)
|
||||
setup_logger(
|
||||
"uvicorn.access", log_level, add_filter=True, log_file_path=log_file_path
|
||||
)
|
||||
setup_logger("lightrag", log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Set up lightrag submodule loggers
|
||||
for name in logging.root.manager.loggerDict:
|
||||
if name.startswith("lightrag."):
|
||||
setup_logger(name, log_level, add_filter=True)
|
||||
setup_logger(name, log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Disable uvicorn.error logger
|
||||
uvicorn_error_logger = logging.getLogger("uvicorn.error")
|
||||
|
@@ -9,7 +9,6 @@ from fastapi import (
|
||||
Request,
|
||||
status
|
||||
)
|
||||
from fastapi.responses import FileResponse
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
@@ -23,7 +22,7 @@ from ascii_colors import ASCIIColors
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from contextlib import asynccontextmanager
|
||||
from dotenv import load_dotenv
|
||||
from .utils_api import (
|
||||
from lightrag.api.utils_api import (
|
||||
get_api_key_dependency,
|
||||
parse_args,
|
||||
get_default_host,
|
||||
@@ -34,14 +33,14 @@ from lightrag import LightRAG
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from lightrag.api import __api_version__
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from .routers.document_routes import (
|
||||
from lightrag.api.routers.document_routes import (
|
||||
DocumentManager,
|
||||
create_document_routes,
|
||||
run_scanning_process,
|
||||
)
|
||||
from .routers.query_routes import create_query_routes
|
||||
from .routers.graph_routes import create_graph_routes
|
||||
from .routers.ollama_api import OllamaAPI
|
||||
from lightrag.api.routers.query_routes import create_query_routes
|
||||
from lightrag.api.routers.graph_routes import create_graph_routes
|
||||
from lightrag.api.routers.ollama_api import OllamaAPI
|
||||
|
||||
from lightrag.utils import logger, set_verbose_debug
|
||||
from lightrag.kg.shared_storage import (
|
||||
@@ -54,7 +53,9 @@ from fastapi.security import OAuth2PasswordRequestForm
|
||||
from .auth import auth_handler
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv(override=True)
|
||||
# Updated to use the .env that is inside the current folder
|
||||
# This update allows the user to put a different.env file for each lightrag folder
|
||||
load_dotenv(".env", override=True)
|
||||
|
||||
# Initialize config parser
|
||||
config = configparser.ConfigParser()
|
||||
@@ -335,8 +336,10 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
addon_params={
|
||||
"language": args.language,
|
||||
},
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
else: # azure_openai
|
||||
@@ -365,7 +368,6 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
@@ -437,17 +439,7 @@ def create_app(args):
|
||||
StaticFiles(directory=static_dir, html=True, check_dir=True),
|
||||
name="webui",
|
||||
)
|
||||
|
||||
@app.get("/webui/")
|
||||
async def webui_root():
|
||||
return FileResponse(static_dir / "index.html")
|
||||
|
||||
@app.middleware("http")
|
||||
async def debug_middleware(request: Request, call_next):
|
||||
print(f"Request path: {request.url.path}")
|
||||
response = await call_next(request)
|
||||
return response
|
||||
|
||||
|
||||
return app
|
||||
|
||||
|
||||
@@ -471,6 +463,9 @@ def configure_logging():
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
print(f"\nLightRAG log file: {log_file_path}\n")
|
||||
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
@@ -214,9 +214,29 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
| ".scss"
|
||||
| ".less"
|
||||
):
|
||||
content = file.decode("utf-8")
|
||||
try:
|
||||
# Try to decode as UTF-8
|
||||
content = file.decode("utf-8")
|
||||
|
||||
# Validate content
|
||||
if not content or len(content.strip()) == 0:
|
||||
logger.error(f"Empty content in file: {file_path.name}")
|
||||
return False
|
||||
|
||||
# Check if content looks like binary data string representation
|
||||
if content.startswith("b'") or content.startswith('b"'):
|
||||
logger.error(
|
||||
f"File {file_path.name} appears to contain binary data representation instead of text"
|
||||
)
|
||||
return False
|
||||
|
||||
except UnicodeDecodeError:
|
||||
logger.error(
|
||||
f"File {file_path.name} is not valid UTF-8 encoded text. Please convert it to UTF-8 before processing."
|
||||
)
|
||||
return False
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
if not pm.is_installed("pypdf2"): # type: ignore
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader # type: ignore
|
||||
from io import BytesIO
|
||||
@@ -226,18 +246,18 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
if not pm.is_installed("python-docx"): # type: ignore
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from docx import Document # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
docx_file = BytesIO(file)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
if not pm.is_installed("python-pptx"): # type: ignore
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation
|
||||
from pptx import Presentation # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pptx_file = BytesIO(file)
|
||||
@@ -247,9 +267,9 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if not pm.is_installed("openpyxl"):
|
||||
if not pm.is_installed("openpyxl"): # type: ignore
|
||||
pm.install("openpyxl")
|
||||
from openpyxl import load_workbook
|
||||
from openpyxl import load_workbook # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
xlsx_file = BytesIO(file)
|
||||
|
@@ -9,6 +9,11 @@ import signal
|
||||
import pipmaster as pm
|
||||
from lightrag.api.utils_api import parse_args, display_splash_screen
|
||||
from lightrag.kg.shared_storage import initialize_share_data, finalize_share_data
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Updated to use the .env that is inside the current folder
|
||||
# This update allows the user to put a different.env file for each lightrag folder
|
||||
load_dotenv(".env")
|
||||
|
||||
|
||||
def check_and_install_dependencies():
|
||||
|
@@ -396,6 +396,7 @@ def parse_args(is_uvicorn_mode: bool = False) -> argparse.Namespace:
|
||||
# Inject chunk configuration
|
||||
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
|
||||
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
|
||||
args.language = get_env_value("LANGUAGE", "English")
|
||||
|
||||
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
||||
|
||||
|
@@ -8,7 +8,7 @@ from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Union, final
|
||||
import numpy as np
|
||||
import pipmaster as pm
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
@@ -613,20 +613,260 @@ class AGEStorage(BaseGraphStorage):
|
||||
await self._driver.putconn(connection)
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified label
|
||||
|
||||
Args:
|
||||
node_id: The label of the node to delete
|
||||
"""
|
||||
entity_name_label = node_id.strip('"')
|
||||
|
||||
query = """
|
||||
MATCH (n:`{label}`)
|
||||
DETACH DELETE n
|
||||
"""
|
||||
params = {"label": AGEStorage._encode_graph_label(entity_name_label)}
|
||||
try:
|
||||
await self._query(query, **params)
|
||||
logger.debug(f"Deleted node with label '{entity_name_label}'")
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node labels to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
entity_name_label_source = source.strip('"')
|
||||
entity_name_label_target = target.strip('"')
|
||||
|
||||
query = """
|
||||
MATCH (source:`{src_label}`)-[r]->(target:`{tgt_label}`)
|
||||
DELETE r
|
||||
"""
|
||||
params = {
|
||||
"src_label": AGEStorage._encode_graph_label(entity_name_label_source),
|
||||
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target),
|
||||
}
|
||||
try:
|
||||
await self._query(query, **params)
|
||||
logger.debug(
|
||||
f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""Embed nodes using the specified algorithm
|
||||
|
||||
Args:
|
||||
algorithm: Name of the embedding algorithm
|
||||
|
||||
Returns:
|
||||
tuple: (embedding matrix, list of node identifiers)
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""Get all node labels in the database
|
||||
|
||||
Returns:
|
||||
["label1", "label2", ...] # Alphabetically sorted label list
|
||||
"""
|
||||
query = """
|
||||
MATCH (n)
|
||||
RETURN DISTINCT labels(n) AS node_labels
|
||||
"""
|
||||
results = await self._query(query)
|
||||
|
||||
all_labels = []
|
||||
for record in results:
|
||||
if record and "node_labels" in record:
|
||||
for label in record["node_labels"]:
|
||||
if label:
|
||||
# Decode label
|
||||
decoded_label = AGEStorage._decode_graph_label(label)
|
||||
all_labels.append(decoded_label)
|
||||
|
||||
# Remove duplicates and sort
|
||||
return sorted(list(set(all_labels)))
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified 'node_label'.
|
||||
Maximum number of nodes is constrained by the environment variable 'MAX_GRAPH_NODES' (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence (nodes containing the specified label string)
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Args:
|
||||
node_label: String to match in node labels (will match any node containing this string in its label)
|
||||
max_depth: Maximum depth of the graph. Defaults to 5.
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph: Complete connected subgraph for specified node
|
||||
"""
|
||||
max_graph_nodes = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
# Handle special case for "*" label
|
||||
if node_label == "*":
|
||||
# Query all nodes and sort by degree
|
||||
query = """
|
||||
MATCH (n)
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
WITH n, count(r) AS degree
|
||||
ORDER BY degree DESC
|
||||
LIMIT {max_nodes}
|
||||
RETURN n, degree
|
||||
"""
|
||||
params = {"max_nodes": max_graph_nodes}
|
||||
nodes_result = await self._query(query, **params)
|
||||
|
||||
# Add nodes to result
|
||||
node_ids = []
|
||||
for record in nodes_result:
|
||||
if "n" in record:
|
||||
node = record["n"]
|
||||
node_id = str(node.get("id", ""))
|
||||
if node_id not in seen_nodes:
|
||||
node_properties = {k: v for k, v in node.items()}
|
||||
node_label = node.get("label", "")
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node_label],
|
||||
properties=node_properties,
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
node_ids.append(node_id)
|
||||
|
||||
# Query edges between these nodes
|
||||
if node_ids:
|
||||
edges_query = """
|
||||
MATCH (a)-[r]->(b)
|
||||
WHERE a.id IN {node_ids} AND b.id IN {node_ids}
|
||||
RETURN a, r, b
|
||||
"""
|
||||
edges_params = {"node_ids": node_ids}
|
||||
edges_result = await self._query(edges_query, **edges_params)
|
||||
|
||||
# Add edges to result
|
||||
for record in edges_result:
|
||||
if "r" in record and "a" in record and "b" in record:
|
||||
source = record["a"].get("id", "")
|
||||
target = record["b"].get("id", "")
|
||||
edge_id = f"{source}-{target}"
|
||||
if edge_id not in seen_edges:
|
||||
edge_properties = {k: v for k, v in record["r"].items()}
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=source,
|
||||
target=target,
|
||||
properties=edge_properties,
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
else:
|
||||
# For specific label, use partial matching
|
||||
entity_name_label = node_label.strip('"')
|
||||
encoded_label = AGEStorage._encode_graph_label(entity_name_label)
|
||||
|
||||
# Find matching start nodes
|
||||
start_query = """
|
||||
MATCH (n:`{label}`)
|
||||
RETURN n
|
||||
"""
|
||||
start_params = {"label": encoded_label}
|
||||
start_nodes = await self._query(start_query, **start_params)
|
||||
|
||||
if not start_nodes:
|
||||
logger.warning(f"No nodes found with label '{entity_name_label}'!")
|
||||
return result
|
||||
|
||||
# Traverse graph from each start node
|
||||
for start_node_record in start_nodes:
|
||||
if "n" in start_node_record:
|
||||
# Use BFS to traverse graph
|
||||
query = """
|
||||
MATCH (start:`{label}`)
|
||||
CALL {
|
||||
MATCH path = (start)-[*0..{max_depth}]->(n)
|
||||
RETURN nodes(path) AS path_nodes, relationships(path) AS path_rels
|
||||
}
|
||||
RETURN DISTINCT path_nodes, path_rels
|
||||
"""
|
||||
params = {"label": encoded_label, "max_depth": max_depth}
|
||||
results = await self._query(query, **params)
|
||||
|
||||
# Extract nodes and edges from results
|
||||
for record in results:
|
||||
if "path_nodes" in record:
|
||||
# Process nodes
|
||||
for node in record["path_nodes"]:
|
||||
node_id = str(node.get("id", ""))
|
||||
if (
|
||||
node_id not in seen_nodes
|
||||
and len(seen_nodes) < max_graph_nodes
|
||||
):
|
||||
node_properties = {k: v for k, v in node.items()}
|
||||
node_label = node.get("label", "")
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node_label],
|
||||
properties=node_properties,
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
if "path_rels" in record:
|
||||
# Process edges
|
||||
for rel in record["path_rels"]:
|
||||
source = str(rel.get("start_id", ""))
|
||||
target = str(rel.get("end_id", ""))
|
||||
edge_id = f"{source}-{target}"
|
||||
if edge_id not in seen_edges:
|
||||
edge_properties = {k: v for k, v in rel.items()}
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type=rel.get("label", "DIRECTED"),
|
||||
source=source,
|
||||
target=target,
|
||||
properties=edge_properties,
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
return result
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
# AGES handles persistence automatically
|
||||
|
@@ -193,7 +193,39 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
||||
pass
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its ID.
|
||||
|
||||
Args:
|
||||
entity_name: The ID of the entity to delete
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Deleting entity with ID {entity_name} from {self.namespace}")
|
||||
self._collection.delete(ids=[entity_name])
|
||||
except Exception as e:
|
||||
logger.error(f"Error during entity deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity and its relations by ID.
|
||||
In vector DB context, this is equivalent to delete_entity.
|
||||
|
||||
Args:
|
||||
entity_name: The ID of the entity to delete
|
||||
"""
|
||||
await self.delete_entity(entity_name)
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||
self._collection.delete(ids=ids)
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
raise
|
||||
|
@@ -16,7 +16,7 @@ from tenacity import (
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
from lightrag.utils import logger
|
||||
|
||||
from ..base import BaseGraphStorage
|
||||
@@ -396,17 +396,302 @@ class GremlinStorage(BaseGraphStorage):
|
||||
print("Implemented but never called.")
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified entity_name
|
||||
|
||||
Args:
|
||||
node_id: The entity_name of the node to delete
|
||||
"""
|
||||
entity_name = GremlinStorage._fix_name(node_id)
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name})
|
||||
.drop()
|
||||
"""
|
||||
try:
|
||||
await self._query(query)
|
||||
logger.debug(
|
||||
"{%s}: Deleted node with entity_name '%s'",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
entity_name,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Embed nodes using the specified algorithm.
|
||||
Currently, only node2vec is supported but never called.
|
||||
|
||||
Args:
|
||||
algorithm: The name of the embedding algorithm to use
|
||||
|
||||
Returns:
|
||||
A tuple of (embeddings, node_ids)
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the specified algorithm is not supported
|
||||
ValueError: If the algorithm is not supported
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Get all node entity_names in the graph
|
||||
Returns:
|
||||
[entity_name1, entity_name2, ...] # Alphabetically sorted entity_name list
|
||||
"""
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.values('entity_name')
|
||||
.dedup()
|
||||
.order()
|
||||
"""
|
||||
try:
|
||||
result = await self._query(query)
|
||||
labels = result if result else []
|
||||
logger.debug(
|
||||
"{%s}: Retrieved %d labels",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
len(labels),
|
||||
)
|
||||
return labels
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving labels: {str(e)}")
|
||||
return []
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
|
||||
Args:
|
||||
node_label: Entity name of the starting node
|
||||
max_depth: Maximum depth of the subgraph
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
# Get maximum number of graph nodes from environment variable, default is 1000
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
entity_name = GremlinStorage._fix_name(node_label)
|
||||
|
||||
# Handle special case for "*" label
|
||||
if node_label == "*":
|
||||
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.elementMap()
|
||||
"""
|
||||
nodes_result = await self._query(query)
|
||||
|
||||
# Add nodes to result
|
||||
for node_data in nodes_result:
|
||||
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
|
||||
if str(node_id) in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node with properties
|
||||
node_properties = {
|
||||
k: v for k, v in node_data.items() if k not in ["id", "label"]
|
||||
}
|
||||
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=str(node_id),
|
||||
labels=[str(node_id)],
|
||||
properties=node_properties,
|
||||
)
|
||||
)
|
||||
seen_nodes.add(str(node_id))
|
||||
|
||||
# Get and add edges
|
||||
if nodes_result:
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.outE()
|
||||
.inV().has('graph', {self.graph_name})
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.path()
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
"""
|
||||
edges_result = await self._query(query)
|
||||
|
||||
for path in edges_result:
|
||||
if len(path) >= 3: # source -> edge -> target
|
||||
source = path[0]
|
||||
edge_data = path[1]
|
||||
target = path[2]
|
||||
|
||||
source_id = source.get("entity_name", str(source.get("id", "")))
|
||||
target_id = target.get("entity_name", str(target.get("id", "")))
|
||||
|
||||
edge_id = f"{source_id}-{target_id}"
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge with properties
|
||||
edge_properties = {
|
||||
k: v
|
||||
for k, v in edge_data.items()
|
||||
if k not in ["id", "label"]
|
||||
}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=str(source_id),
|
||||
target=str(target_id),
|
||||
properties=edge_properties,
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
else:
|
||||
# Search for specific node and get its neighborhood
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name})
|
||||
.repeat(__.both().simplePath().dedup())
|
||||
.times({max_depth})
|
||||
.emit()
|
||||
.dedup()
|
||||
.limit({MAX_GRAPH_NODES})
|
||||
.elementMap()
|
||||
"""
|
||||
nodes_result = await self._query(query)
|
||||
|
||||
# Add nodes to result
|
||||
for node_data in nodes_result:
|
||||
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
|
||||
if str(node_id) in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node with properties
|
||||
node_properties = {
|
||||
k: v for k, v in node_data.items() if k not in ["id", "label"]
|
||||
}
|
||||
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=str(node_id),
|
||||
labels=[str(node_id)],
|
||||
properties=node_properties,
|
||||
)
|
||||
)
|
||||
seen_nodes.add(str(node_id))
|
||||
|
||||
# Get edges between the nodes in the result
|
||||
if nodes_result:
|
||||
node_ids = [
|
||||
n.get("entity_name", str(n.get("id", ""))) for n in nodes_result
|
||||
]
|
||||
node_ids_query = ", ".join(
|
||||
[GremlinStorage._to_value_map(nid) for nid in node_ids]
|
||||
)
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', within({node_ids_query}))
|
||||
.outE()
|
||||
.where(inV().has('graph', {self.graph_name})
|
||||
.has('entity_name', within({node_ids_query})))
|
||||
.path()
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
.by(elementMap())
|
||||
"""
|
||||
edges_result = await self._query(query)
|
||||
|
||||
for path in edges_result:
|
||||
if len(path) >= 3: # source -> edge -> target
|
||||
source = path[0]
|
||||
edge_data = path[1]
|
||||
target = path[2]
|
||||
|
||||
source_id = source.get("entity_name", str(source.get("id", "")))
|
||||
target_id = target.get("entity_name", str(target.get("id", "")))
|
||||
|
||||
edge_id = f"{source_id}-{target_id}"
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge with properties
|
||||
edge_properties = {
|
||||
k: v
|
||||
for k, v in edge_data.items()
|
||||
if k not in ["id", "label"]
|
||||
}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
source=str(source_id),
|
||||
target=str(target_id),
|
||||
properties=edge_properties,
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
"Subgraph query successful | Node count: %d | Edge count: %d",
|
||||
len(result.nodes),
|
||||
len(result.edges),
|
||||
)
|
||||
return result
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node entity_names to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
entity_name_source = GremlinStorage._fix_name(source)
|
||||
entity_name_target = GremlinStorage._fix_name(target)
|
||||
|
||||
query = f"""g
|
||||
.V().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name_source})
|
||||
.outE()
|
||||
.where(inV().has('graph', {self.graph_name})
|
||||
.has('entity_name', {entity_name_target}))
|
||||
.drop()
|
||||
"""
|
||||
try:
|
||||
await self._query(query)
|
||||
logger.debug(
|
||||
"{%s}: Deleted edge from '%s' to '%s'",
|
||||
inspect.currentframe().f_code.co_name,
|
||||
entity_name_source,
|
||||
entity_name_target,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
@@ -44,6 +44,15 @@ class JsonKVStorage(BaseKVStorage):
|
||||
)
|
||||
write_json(data_dict, self._file_name)
|
||||
|
||||
async def get_all(self) -> dict[str, Any]:
|
||||
"""Get all data from storage
|
||||
|
||||
Returns:
|
||||
Dictionary containing all stored data
|
||||
"""
|
||||
async with self._storage_lock:
|
||||
return dict(self._data)
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
async with self._storage_lock:
|
||||
return self._data.get(id)
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
from typing import Any, final
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
from lightrag.utils import logger
|
||||
from lightrag.utils import logger, compute_mdhash_id
|
||||
from ..base import BaseVectorStorage
|
||||
import pipmaster as pm
|
||||
|
||||
@@ -124,7 +124,85 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
pass
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity from the vector database
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Compute entity ID from name
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(
|
||||
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||
)
|
||||
|
||||
# Delete the entity from Milvus collection
|
||||
result = self._client.delete(
|
||||
collection_name=self.namespace, pks=[entity_id]
|
||||
)
|
||||
|
||||
if result and result.get("delete_count", 0) > 0:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Search for relations where entity is either source or target
|
||||
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
|
||||
|
||||
# Find all relations involving this entity
|
||||
results = self._client.query(
|
||||
collection_name=self.namespace, filter=expr, output_fields=["id"]
|
||||
)
|
||||
|
||||
if not results or len(results) == 0:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
return
|
||||
|
||||
# Extract IDs of relations to delete
|
||||
relation_ids = [item["id"] for item in results]
|
||||
logger.debug(
|
||||
f"Found {len(relation_ids)} relations for entity {entity_name}"
|
||||
)
|
||||
|
||||
# Delete the relations
|
||||
if relation_ids:
|
||||
delete_result = self._client.delete(
|
||||
collection_name=self.namespace, pks=relation_ids
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
# Delete vectors by IDs
|
||||
result = self._client.delete(collection_name=self.namespace, pks=ids)
|
||||
|
||||
if result and result.get("delete_count", 0) > 0:
|
||||
logger.debug(
|
||||
f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}"
|
||||
)
|
||||
else:
|
||||
logger.debug(f"No vectors were deleted from {self.namespace}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
@@ -15,7 +15,7 @@ from ..base import (
|
||||
DocStatusStorage,
|
||||
)
|
||||
from ..namespace import NameSpace, is_namespace
|
||||
from ..utils import logger
|
||||
from ..utils import logger, compute_mdhash_id
|
||||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
import pipmaster as pm
|
||||
|
||||
@@ -333,7 +333,7 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
Check if there's a direct single-hop edge from source_node_id to target_node_id.
|
||||
|
||||
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
|
||||
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
|
||||
"Look up zero expansions." Actually, for a direct edge check, we can do maxDepth=1
|
||||
and then see if the target node is in the "reachableNodes" at depth=0.
|
||||
|
||||
But typically for a direct edge, we might just do a find_one.
|
||||
@@ -795,6 +795,50 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]) -> None:
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node IDs to be deleted
|
||||
"""
|
||||
logger.info(f"Deleting {len(nodes)} nodes")
|
||||
if not nodes:
|
||||
return
|
||||
|
||||
# 1. Remove all edges referencing these nodes (remove from edges array of other nodes)
|
||||
await self.collection.update_many(
|
||||
{}, {"$pull": {"edges": {"target": {"$in": nodes}}}}
|
||||
)
|
||||
|
||||
# 2. Delete the node documents
|
||||
await self.collection.delete_many({"_id": {"$in": nodes}})
|
||||
|
||||
logger.debug(f"Successfully deleted nodes: {nodes}")
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
logger.info(f"Deleting {len(edges)} edges")
|
||||
if not edges:
|
||||
return
|
||||
|
||||
update_tasks = []
|
||||
for source, target in edges:
|
||||
# Remove edge pointing to target from source node's edges array
|
||||
update_tasks.append(
|
||||
self.collection.update_one(
|
||||
{"_id": source}, {"$pull": {"edges": {"target": target}}}
|
||||
)
|
||||
)
|
||||
|
||||
if update_tasks:
|
||||
await asyncio.gather(*update_tasks)
|
||||
|
||||
logger.debug(f"Successfully deleted edges: {edges}")
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
@@ -932,11 +976,74 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||
if not ids:
|
||||
return
|
||||
|
||||
try:
|
||||
result = await self._data.delete_many({"_id": {"$in": ids}})
|
||||
logger.debug(
|
||||
f"Successfully deleted {result.deleted_count} vectors from {self.namespace}"
|
||||
)
|
||||
except PyMongoError as e:
|
||||
logger.error(
|
||||
f"Error while deleting vectors from {self.namespace}: {str(e)}"
|
||||
)
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(
|
||||
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||
)
|
||||
|
||||
result = await self._data.delete_one({"_id": entity_id})
|
||||
if result.deleted_count > 0:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {str(e)}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Find relations where entity appears as source or target
|
||||
relations_cursor = self._data.find(
|
||||
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
|
||||
)
|
||||
relations = await relations_cursor.to_list(length=None)
|
||||
|
||||
if not relations:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
return
|
||||
|
||||
# Extract IDs of relations to delete
|
||||
relation_ids = [relation["_id"] for relation in relations]
|
||||
logger.debug(
|
||||
f"Found {len(relation_ids)} relations for entity {entity_name}"
|
||||
)
|
||||
|
||||
# Delete the relations
|
||||
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
|
||||
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {str(e)}")
|
||||
|
||||
|
||||
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
|
||||
|
@@ -690,8 +690,98 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
labels.append(record["label"])
|
||||
return labels
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified label
|
||||
|
||||
Args:
|
||||
node_id: The label of the node to delete
|
||||
"""
|
||||
label = await self._ensure_label(node_id)
|
||||
|
||||
async def _do_delete(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MATCH (n:`{label}`)
|
||||
DETACH DELETE n
|
||||
"""
|
||||
await tx.run(query)
|
||||
logger.debug(f"Deleted node with label '{label}'")
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node labels to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
source_label = await self._ensure_label(source)
|
||||
target_label = await self._ensure_label(target)
|
||||
|
||||
async def _do_delete_edge(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MATCH (source:`{source_label}`)-[r]->(target:`{target_label}`)
|
||||
DELETE r
|
||||
"""
|
||||
await tx.run(query)
|
||||
logger.debug(f"Deleted edge from '{source_label}' to '{target_label}'")
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete_edge)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
|
@@ -8,7 +8,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
from ..base import (
|
||||
BaseGraphStorage,
|
||||
@@ -442,11 +442,57 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
||||
# Oracles handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_vectors"].format(
|
||||
ids=",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
raise
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_entity"]
|
||||
params = {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
raise
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations connected to an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
SQL = SQL_TEMPLATES["delete_entity_relations"]
|
||||
params = {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
await self.db.execute(SQL, params)
|
||||
logger.info(f"Successfully deleted relations for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
@final
|
||||
@@ -668,15 +714,266 @@ class OracleGraphStorage(BaseGraphStorage):
|
||||
return res
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node from the graph
|
||||
|
||||
Args:
|
||||
node_id: ID of the node to delete
|
||||
"""
|
||||
try:
|
||||
# First delete all relations connected to this node
|
||||
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
|
||||
params_relations = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||
await self.db.execute(delete_relations_sql, params_relations)
|
||||
|
||||
# Then delete the node itself
|
||||
delete_node_sql = SQL_TEMPLATES["delete_entity"]
|
||||
params_node = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||
await self.db.execute(delete_node_sql, params_node)
|
||||
|
||||
logger.info(
|
||||
f"Successfully deleted node {node_id} and all its relationships"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting node {node_id}: {e}")
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]) -> None:
|
||||
"""Delete multiple nodes from the graph
|
||||
|
||||
Args:
|
||||
nodes: List of node IDs to be deleted
|
||||
"""
|
||||
if not nodes:
|
||||
return
|
||||
|
||||
try:
|
||||
for node in nodes:
|
||||
# For each node, first delete all its relationships
|
||||
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
|
||||
params_relations = {"workspace": self.db.workspace, "entity_name": node}
|
||||
await self.db.execute(delete_relations_sql, params_relations)
|
||||
|
||||
# Then delete the node itself
|
||||
delete_node_sql = SQL_TEMPLATES["delete_entity"]
|
||||
params_node = {"workspace": self.db.workspace, "entity_name": node}
|
||||
await self.db.execute(delete_node_sql, params_node)
|
||||
|
||||
logger.info(
|
||||
f"Successfully deleted {len(nodes)} nodes and their relationships"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during batch node deletion: {e}")
|
||||
raise
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||
"""Delete multiple edges from the graph
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
if not edges:
|
||||
return
|
||||
|
||||
try:
|
||||
for source, target in edges:
|
||||
# Check if the edge exists before attempting to delete
|
||||
if await self.has_edge(source, target):
|
||||
# Delete the edge using a SQL query that matches both source and target
|
||||
delete_edge_sql = """
|
||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE workspace = :workspace
|
||||
AND source_name = :source_name
|
||||
AND target_name = :target_name
|
||||
"""
|
||||
params = {
|
||||
"workspace": self.db.workspace,
|
||||
"source_name": source,
|
||||
"target_name": target,
|
||||
}
|
||||
await self.db.execute(delete_edge_sql, params)
|
||||
|
||||
logger.info(f"Successfully deleted {len(edges)} edges from the graph")
|
||||
except Exception as e:
|
||||
logger.error(f"Error during batch edge deletion: {e}")
|
||||
raise
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""Get all unique entity types (labels) in the graph
|
||||
|
||||
Returns:
|
||||
List of unique entity types/labels
|
||||
"""
|
||||
try:
|
||||
SQL = """
|
||||
SELECT DISTINCT entity_type
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY entity_type
|
||||
"""
|
||||
params = {"workspace": self.db.workspace}
|
||||
results = await self.db.query(SQL, params, multirows=True)
|
||||
|
||||
if results:
|
||||
labels = [row["entity_type"] for row in results]
|
||||
return labels
|
||||
else:
|
||||
return []
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving entity types: {e}")
|
||||
return []
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""Retrieve a connected subgraph starting from nodes matching the given label
|
||||
|
||||
Maximum number of nodes is constrained by MAX_GRAPH_NODES environment variable.
|
||||
Prioritizes nodes by:
|
||||
1. Nodes matching the specified label
|
||||
2. Nodes directly connected to matching nodes
|
||||
3. Node degree (number of connections)
|
||||
|
||||
Args:
|
||||
node_label: Label to match for starting nodes (use "*" for all nodes)
|
||||
max_depth: Maximum depth of traversal from starting nodes
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
|
||||
try:
|
||||
# Define maximum number of nodes to return
|
||||
max_graph_nodes = int(os.environ.get("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
if node_label == "*":
|
||||
# For "*" label, get all nodes up to the limit
|
||||
nodes_sql = """
|
||||
SELECT name, entity_type, description, source_chunk_id
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY id
|
||||
FETCH FIRST :limit ROWS ONLY
|
||||
"""
|
||||
nodes_params = {
|
||||
"workspace": self.db.workspace,
|
||||
"limit": max_graph_nodes,
|
||||
}
|
||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||
else:
|
||||
# For specific label, find matching nodes and related nodes
|
||||
nodes_sql = """
|
||||
WITH matching_nodes AS (
|
||||
SELECT name
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
AND (name LIKE '%' || :node_label || '%' OR entity_type LIKE '%' || :node_label || '%')
|
||||
)
|
||||
SELECT n.name, n.entity_type, n.description, n.source_chunk_id,
|
||||
CASE
|
||||
WHEN n.name IN (SELECT name FROM matching_nodes) THEN 2
|
||||
WHEN EXISTS (
|
||||
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
|
||||
WHERE workspace = :workspace
|
||||
AND ((e.source_name = n.name AND e.target_name IN (SELECT name FROM matching_nodes))
|
||||
OR (e.target_name = n.name AND e.source_name IN (SELECT name FROM matching_nodes)))
|
||||
) THEN 1
|
||||
ELSE 0
|
||||
END AS priority,
|
||||
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
|
||||
WHERE workspace = :workspace
|
||||
AND (e.source_name = n.name OR e.target_name = n.name)) AS degree
|
||||
FROM LIGHTRAG_GRAPH_NODES n
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY priority DESC, degree DESC
|
||||
FETCH FIRST :limit ROWS ONLY
|
||||
"""
|
||||
nodes_params = {
|
||||
"workspace": self.db.workspace,
|
||||
"node_label": node_label,
|
||||
"limit": max_graph_nodes,
|
||||
}
|
||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||
|
||||
if not nodes:
|
||||
logger.warning(f"No nodes found matching '{node_label}'")
|
||||
return result
|
||||
|
||||
# Create mapping of node IDs to be used to filter edges
|
||||
node_names = [node["name"] for node in nodes]
|
||||
|
||||
# Add nodes to result
|
||||
seen_nodes = set()
|
||||
for node in nodes:
|
||||
node_id = node["name"]
|
||||
if node_id in seen_nodes:
|
||||
continue
|
||||
|
||||
# Create node properties dictionary
|
||||
properties = {
|
||||
"entity_type": node["entity_type"],
|
||||
"description": node["description"] or "",
|
||||
"source_id": node["source_chunk_id"] or "",
|
||||
}
|
||||
|
||||
# Add node to result
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id, labels=[node["entity_type"]], properties=properties
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Get edges between these nodes
|
||||
edges_sql = """
|
||||
SELECT source_name, target_name, weight, keywords, description, source_chunk_id
|
||||
FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE workspace = :workspace
|
||||
AND source_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
||||
AND target_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
||||
ORDER BY id
|
||||
"""
|
||||
edges_params = {"workspace": self.db.workspace, "node_names": node_names}
|
||||
edges = await self.db.query(edges_sql, edges_params, multirows=True)
|
||||
|
||||
# Add edges to result
|
||||
seen_edges = set()
|
||||
for edge in edges:
|
||||
source = edge["source_name"]
|
||||
target = edge["target_name"]
|
||||
edge_id = f"{source}-{target}"
|
||||
|
||||
if edge_id in seen_edges:
|
||||
continue
|
||||
|
||||
# Create edge properties dictionary
|
||||
properties = {
|
||||
"weight": edge["weight"] or 0.0,
|
||||
"keywords": edge["keywords"] or "",
|
||||
"description": edge["description"] or "",
|
||||
"source_id": edge["source_chunk_id"] or "",
|
||||
}
|
||||
|
||||
# Add edge to result
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="RELATED",
|
||||
source=source,
|
||||
target=target,
|
||||
properties=properties,
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving knowledge graph: {e}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
N_T = {
|
||||
@@ -927,4 +1224,12 @@ SQL_TEMPLATES = {
|
||||
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
|
||||
)""",
|
||||
# SQL for deletion
|
||||
"delete_vectors": "DELETE FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace AND id IN ({ids})",
|
||||
"delete_entity": "DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace AND name=:entity_name",
|
||||
"delete_entity_relations": "DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace AND (source_name=:entity_name OR target_name=:entity_name)",
|
||||
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a)
|
||||
WHERE a.workspace=:workspace AND a.name=:node_id
|
||||
ACTION DELETE a)""",
|
||||
}
|
||||
|
@@ -7,7 +7,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
import sys
|
||||
from tenacity import (
|
||||
@@ -512,11 +512,68 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
# PG handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs from the storage.
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
logger.error(f"Unknown namespace for vector deletion: {self.namespace}")
|
||||
return
|
||||
|
||||
ids_list = ",".join([f"'{id}'" for id in ids])
|
||||
delete_sql = (
|
||||
f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
|
||||
)
|
||||
|
||||
try:
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by its name from the vector storage.
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Construct SQL to delete the entity
|
||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
|
||||
WHERE workspace=$1 AND entity_name=$2"""
|
||||
|
||||
await self.db.execute(
|
||||
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
)
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity.
|
||||
|
||||
Args:
|
||||
entity_name: The name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Delete relations where the entity is either the source or target
|
||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
|
||||
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
|
||||
|
||||
await self.db.execute(
|
||||
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||
)
|
||||
logger.debug(f"Successfully deleted relations for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
|
||||
|
||||
|
||||
@final
|
||||
@@ -1086,20 +1143,188 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
print("Implemented but never called.")
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Delete a node from the graph.
|
||||
|
||||
Args:
|
||||
node_id (str): The ID of the node to delete.
|
||||
"""
|
||||
label = self._encode_graph_label(node_id.strip('"'))
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity {node_id: "%s"})
|
||||
DETACH DELETE n
|
||||
$$) AS (n agtype)""" % (self.graph_name, label)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during node deletion: {%s}", e)
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, node_ids: list[str]) -> None:
|
||||
"""
|
||||
Remove multiple nodes from the graph.
|
||||
|
||||
Args:
|
||||
node_ids (list[str]): A list of node IDs to remove.
|
||||
"""
|
||||
encoded_node_ids = [
|
||||
self._encode_graph_label(node_id.strip('"')) for node_id in node_ids
|
||||
]
|
||||
node_id_list = ", ".join([f'"{node_id}"' for node_id in encoded_node_ids])
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
WHERE n.node_id IN [%s]
|
||||
DETACH DELETE n
|
||||
$$) AS (n agtype)""" % (self.graph_name, node_id_list)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during node removal: {%s}", e)
|
||||
raise
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||
"""
|
||||
Remove multiple edges from the graph.
|
||||
|
||||
Args:
|
||||
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
|
||||
"""
|
||||
encoded_edges = [
|
||||
(
|
||||
self._encode_graph_label(src.strip('"')),
|
||||
self._encode_graph_label(tgt.strip('"')),
|
||||
)
|
||||
for src, tgt in edges
|
||||
]
|
||||
edge_list = ", ".join([f'["{src}", "{tgt}"]' for src, tgt in encoded_edges])
|
||||
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (a:Entity)-[r]->(b:Entity)
|
||||
WHERE [a.node_id, b.node_id] IN [%s]
|
||||
DELETE r
|
||||
$$) AS (r agtype)""" % (self.graph_name, edge_list)
|
||||
|
||||
try:
|
||||
await self._query(query, readonly=False)
|
||||
except Exception as e:
|
||||
logger.error("Error during edge removal: {%s}", e)
|
||||
raise
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all labels (node IDs) in the graph.
|
||||
|
||||
Returns:
|
||||
list[str]: A list of all labels in the graph.
|
||||
"""
|
||||
query = (
|
||||
"""SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
RETURN DISTINCT n.node_id AS label
|
||||
$$) AS (label text)"""
|
||||
% self.graph_name
|
||||
)
|
||||
|
||||
results = await self._query(query)
|
||||
labels = [self._decode_graph_label(result["label"]) for result in results]
|
||||
|
||||
return labels
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Generate node embeddings using the specified algorithm.
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
Args:
|
||||
algorithm (str): The name of the embedding algorithm to use.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray[Any, Any], list[str]]: A tuple containing the embeddings and the corresponding node IDs.
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Unsupported embedding algorithm: {algorithm}")
|
||||
|
||||
embed_func = self._node_embed_algorithms[algorithm]
|
||||
return await embed_func()
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Retrieve a subgraph containing the specified node and its neighbors up to the specified depth.
|
||||
|
||||
Args:
|
||||
node_label (str): The label of the node to start from. If "*", the entire graph is returned.
|
||||
max_depth (int): The maximum depth to traverse from the starting node.
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph: The retrieved subgraph.
|
||||
"""
|
||||
MAX_GRAPH_NODES = 1000
|
||||
|
||||
if node_label == "*":
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity)
|
||||
OPTIONAL MATCH (n)-[r]->(m:Entity)
|
||||
RETURN n, r, m
|
||||
LIMIT %d
|
||||
$$) AS (n agtype, r agtype, m agtype)""" % (
|
||||
self.graph_name,
|
||||
MAX_GRAPH_NODES,
|
||||
)
|
||||
else:
|
||||
encoded_node_label = self._encode_graph_label(node_label.strip('"'))
|
||||
query = """SELECT * FROM cypher('%s', $$
|
||||
MATCH (n:Entity {node_id: "%s"})
|
||||
OPTIONAL MATCH p = (n)-[*..%d]-(m)
|
||||
RETURN nodes(p) AS nodes, relationships(p) AS relationships
|
||||
LIMIT %d
|
||||
$$) AS (nodes agtype[], relationships agtype[])""" % (
|
||||
self.graph_name,
|
||||
encoded_node_label,
|
||||
max_depth,
|
||||
MAX_GRAPH_NODES,
|
||||
)
|
||||
|
||||
results = await self._query(query)
|
||||
|
||||
nodes = set()
|
||||
edges = []
|
||||
|
||||
for result in results:
|
||||
if node_label == "*":
|
||||
if result["n"]:
|
||||
node = result["n"]
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["m"]:
|
||||
node = result["m"]
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["r"]:
|
||||
edge = result["r"]
|
||||
src_id = self._decode_graph_label(edge["start_id"])
|
||||
tgt_id = self._decode_graph_label(edge["end_id"])
|
||||
edges.append((src_id, tgt_id))
|
||||
else:
|
||||
if result["nodes"]:
|
||||
for node in result["nodes"]:
|
||||
nodes.add(self._decode_graph_label(node["node_id"]))
|
||||
if result["relationships"]:
|
||||
for edge in result["relationships"]:
|
||||
src_id = self._decode_graph_label(edge["start_id"])
|
||||
tgt_id = self._decode_graph_label(edge["end_id"])
|
||||
edges.append((src_id, tgt_id))
|
||||
|
||||
kg = KnowledgeGraph(
|
||||
nodes=[KnowledgeGraphNode(id=node_id) for node_id in nodes],
|
||||
edges=[KnowledgeGraphEdge(source=src, target=tgt) for src, tgt in edges],
|
||||
)
|
||||
|
||||
return kg
|
||||
|
||||
async def drop(self) -> None:
|
||||
"""Drop the storage"""
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any, final
|
||||
from typing import Any, final, List
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
import hashlib
|
||||
@@ -141,8 +141,95 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
# Qdrant handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: List[str]) -> None:
|
||||
"""Delete vectors with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of vector IDs to be deleted
|
||||
"""
|
||||
try:
|
||||
# Convert regular ids to Qdrant compatible ids
|
||||
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
||||
# Delete points from the collection
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=qdrant_ids,
|
||||
),
|
||||
wait=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete an entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
try:
|
||||
# Generate the entity ID
|
||||
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
|
||||
logger.debug(
|
||||
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||
)
|
||||
|
||||
# Delete the entity point from the collection
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=[entity_id],
|
||||
),
|
||||
wait=True,
|
||||
)
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Find relations where the entity is either source or target
|
||||
results = self._client.scroll(
|
||||
collection_name=self.namespace,
|
||||
scroll_filter=models.Filter(
|
||||
should=[
|
||||
models.FieldCondition(
|
||||
key="src_id", match=models.MatchValue(value=entity_name)
|
||||
),
|
||||
models.FieldCondition(
|
||||
key="tgt_id", match=models.MatchValue(value=entity_name)
|
||||
),
|
||||
]
|
||||
),
|
||||
with_payload=True,
|
||||
limit=1000, # Adjust as needed for your use case
|
||||
)
|
||||
|
||||
# Extract points that need to be deleted
|
||||
relation_points = results[0]
|
||||
ids_to_delete = [point.id for point in relation_points]
|
||||
|
||||
if ids_to_delete:
|
||||
# Delete the relations
|
||||
self._client.delete(
|
||||
collection_name=self.namespace,
|
||||
points_selector=models.PointIdsList(
|
||||
points=ids_to_delete,
|
||||
),
|
||||
wait=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
|
||||
)
|
||||
else:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
@@ -9,7 +9,7 @@ if not pm.is_installed("redis"):
|
||||
|
||||
# aioredis is a depricated library, replaced with redis
|
||||
from redis.asyncio import Redis
|
||||
from lightrag.utils import logger
|
||||
from lightrag.utils import logger, compute_mdhash_id
|
||||
from lightrag.base import BaseKVStorage
|
||||
import json
|
||||
|
||||
@@ -64,3 +64,86 @@ class RedisKVStorage(BaseKVStorage):
|
||||
async def index_done_callback(self) -> None:
|
||||
# Redis handles persistence automatically
|
||||
pass
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete entries with specified IDs
|
||||
|
||||
Args:
|
||||
ids: List of entry IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
pipe = self._redis.pipeline()
|
||||
for id in ids:
|
||||
pipe.delete(f"{self.namespace}:{id}")
|
||||
|
||||
results = await pipe.execute()
|
||||
deleted_count = sum(results)
|
||||
logger.info(
|
||||
f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}"
|
||||
)
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
"""Delete an entity by name
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity to delete
|
||||
"""
|
||||
|
||||
try:
|
||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||
logger.debug(
|
||||
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||
)
|
||||
|
||||
# Delete the entity
|
||||
result = await self._redis.delete(f"{self.namespace}:{entity_id}")
|
||||
|
||||
if result:
|
||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||
else:
|
||||
logger.debug(f"Entity {entity_name} not found in storage")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
"""Delete all relations associated with an entity
|
||||
|
||||
Args:
|
||||
entity_name: Name of the entity whose relations should be deleted
|
||||
"""
|
||||
try:
|
||||
# Get all keys in this namespace
|
||||
cursor = 0
|
||||
relation_keys = []
|
||||
pattern = f"{self.namespace}:*"
|
||||
|
||||
while True:
|
||||
cursor, keys = await self._redis.scan(cursor, match=pattern)
|
||||
|
||||
# For each key, get the value and check if it's related to entity_name
|
||||
for key in keys:
|
||||
value = await self._redis.get(key)
|
||||
if value:
|
||||
data = json.loads(value)
|
||||
# Check if this is a relation involving the entity
|
||||
if (
|
||||
data.get("src_id") == entity_name
|
||||
or data.get("tgt_id") == entity_name
|
||||
):
|
||||
relation_keys.append(key)
|
||||
|
||||
# Exit loop when cursor returns to 0
|
||||
if cursor == 0:
|
||||
break
|
||||
|
||||
# Delete the relation keys
|
||||
if relation_keys:
|
||||
deleted = await self._redis.delete(*relation_keys)
|
||||
logger.debug(f"Deleted {deleted} relations for {entity_name}")
|
||||
else:
|
||||
logger.debug(f"No relations found for entity {entity_name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
@@ -5,7 +5,7 @@ from typing import Any, Union, final
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
|
||||
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
||||
@@ -174,6 +174,14 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
self.db = None
|
||||
|
||||
################ QUERY METHODS ################
|
||||
async def get_all(self) -> dict[str, Any]:
|
||||
"""Get all data from storage
|
||||
|
||||
Returns:
|
||||
Dictionary containing all stored data
|
||||
"""
|
||||
async with self._storage_lock:
|
||||
return dict(self._data)
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
"""Fetch doc_full data by id."""
|
||||
@@ -558,15 +566,163 @@ class TiDBGraphStorage(BaseGraphStorage):
|
||||
pass
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node and all its related edges
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to delete
|
||||
"""
|
||||
# First delete all edges related to this node
|
||||
await self.db.execute(
|
||||
SQL_TEMPLATES["delete_node_edges"],
|
||||
{"name": node_id, "workspace": self.db.workspace},
|
||||
)
|
||||
|
||||
# Then delete the node itself
|
||||
await self.db.execute(
|
||||
SQL_TEMPLATES["delete_node"],
|
||||
{"name": node_id, "workspace": self.db.workspace},
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Node {node_id} and its related edges have been deleted from the graph"
|
||||
)
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
"""Get all entity types (labels) in the database
|
||||
|
||||
Returns:
|
||||
List of labels sorted alphabetically
|
||||
"""
|
||||
result = await self.db.query(
|
||||
SQL_TEMPLATES["get_all_labels"],
|
||||
{"workspace": self.db.workspace},
|
||||
multirows=True,
|
||||
)
|
||||
|
||||
if not result:
|
||||
return []
|
||||
|
||||
# Extract all labels
|
||||
return [item["label"] for item in result]
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
"""
|
||||
Get a connected subgraph of nodes matching the specified label
|
||||
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
|
||||
|
||||
Args:
|
||||
node_label: The node label to match
|
||||
max_depth: Maximum depth of the subgraph
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges
|
||||
"""
|
||||
result = KnowledgeGraph()
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
# Get matching nodes
|
||||
if node_label == "*":
|
||||
# Handle special case, get all nodes
|
||||
node_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_all_nodes"],
|
||||
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
|
||||
multirows=True,
|
||||
)
|
||||
else:
|
||||
# Get nodes matching the label
|
||||
label_pattern = f"%{node_label}%"
|
||||
node_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_matching_nodes"],
|
||||
{"workspace": self.db.workspace, "label_pattern": label_pattern},
|
||||
multirows=True,
|
||||
)
|
||||
|
||||
if not node_results:
|
||||
logger.warning(f"No nodes found matching label {node_label}")
|
||||
return result
|
||||
|
||||
# Limit the number of returned nodes
|
||||
if len(node_results) > MAX_GRAPH_NODES:
|
||||
node_results = node_results[:MAX_GRAPH_NODES]
|
||||
|
||||
# Extract node names for edge query
|
||||
node_names = [node["name"] for node in node_results]
|
||||
node_names_str = ",".join([f"'{name}'" for name in node_names])
|
||||
|
||||
# Add nodes to result
|
||||
for node in node_results:
|
||||
node_properties = {
|
||||
k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]
|
||||
}
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node["name"],
|
||||
labels=[node["entity_type"]]
|
||||
if node.get("entity_type")
|
||||
else [node["name"]],
|
||||
properties=node_properties,
|
||||
)
|
||||
)
|
||||
|
||||
# Get related edges
|
||||
edge_results = await self.db.query(
|
||||
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
|
||||
{"workspace": self.db.workspace},
|
||||
multirows=True,
|
||||
)
|
||||
|
||||
if edge_results:
|
||||
# Add edges to result
|
||||
for edge in edge_results:
|
||||
# Only include edges related to selected nodes
|
||||
if (
|
||||
edge["source_name"] in node_names
|
||||
and edge["target_name"] in node_names
|
||||
):
|
||||
edge_id = f"{edge['source_name']}-{edge['target_name']}"
|
||||
edge_properties = {
|
||||
k: v
|
||||
for k, v in edge.items()
|
||||
if k not in ["id", "source_name", "target_name"]
|
||||
}
|
||||
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="RELATED",
|
||||
source=edge["source_name"],
|
||||
target=edge["target_name"],
|
||||
properties=edge_properties,
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
return result
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node IDs to delete
|
||||
"""
|
||||
for node_id in nodes:
|
||||
await self.delete_node(node_id)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to delete, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
await self.db.execute(
|
||||
SQL_TEMPLATES["remove_multiple_edges"],
|
||||
{"source": source, "target": target, "workspace": self.db.workspace},
|
||||
)
|
||||
|
||||
|
||||
N_T = {
|
||||
@@ -777,4 +933,39 @@ SQL_TEMPLATES = {
|
||||
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
|
||||
source_chunk_id = VALUES(source_chunk_id)
|
||||
""",
|
||||
"delete_node": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE name = :name AND workspace = :workspace
|
||||
""",
|
||||
"delete_node_edges": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
|
||||
""",
|
||||
"get_all_labels": """
|
||||
SELECT DISTINCT entity_type as label
|
||||
FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY entity_type
|
||||
""",
|
||||
"get_matching_nodes": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE name LIKE :label_pattern AND workspace = :workspace
|
||||
ORDER BY name
|
||||
""",
|
||||
"get_all_nodes": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY name
|
||||
LIMIT :max_nodes
|
||||
""",
|
||||
"get_related_edges": """
|
||||
SELECT * FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name IN (:node_names) OR target_name IN (:node_names))
|
||||
AND workspace = :workspace
|
||||
""",
|
||||
"remove_multiple_edges": """
|
||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||
WHERE (source_name = :source AND target_name = :target)
|
||||
AND workspace = :workspace
|
||||
""",
|
||||
}
|
||||
|
@@ -3,6 +3,7 @@ from __future__ import annotations
|
||||
import asyncio
|
||||
import configparser
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
@@ -35,7 +36,7 @@ from .operate import (
|
||||
mix_kg_vector_query,
|
||||
naive_query,
|
||||
)
|
||||
from .prompt import GRAPH_FIELD_SEP
|
||||
from .prompt import GRAPH_FIELD_SEP, PROMPTS
|
||||
from .utils import (
|
||||
EmbeddingFunc,
|
||||
always_get_an_event_loop,
|
||||
@@ -85,14 +86,10 @@ class LightRAG:
|
||||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||||
"""Storage type for tracking document processing statuses."""
|
||||
|
||||
# Logging
|
||||
# Logging (Deprecated, use setup_logger in utils.py instead)
|
||||
# ---
|
||||
|
||||
log_level: int = field(default=logger.level)
|
||||
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
||||
|
||||
log_file_path: str = field(default=os.path.join(os.getcwd(), "lightrag.log"))
|
||||
"""Log file path."""
|
||||
log_level: int | None = field(default=None)
|
||||
log_file_path: str | None = field(default=None)
|
||||
|
||||
# Entity extraction
|
||||
# ---
|
||||
@@ -239,7 +236,11 @@ class LightRAG:
|
||||
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
|
||||
"""Maximum number of parallel insert operations."""
|
||||
|
||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||
addon_params: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"language": os.getenv("SUMMARY_LANGUAGE", PROMPTS["DEFAULT_LANGUAGE"])
|
||||
}
|
||||
)
|
||||
|
||||
# Storages Management
|
||||
# ---
|
||||
@@ -266,13 +267,30 @@ class LightRAG:
|
||||
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
||||
|
||||
def __post_init__(self):
|
||||
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
|
||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||
|
||||
from lightrag.kg.shared_storage import (
|
||||
initialize_share_data,
|
||||
)
|
||||
|
||||
# Handle deprecated parameters
|
||||
if self.log_level is not None:
|
||||
warnings.warn(
|
||||
"WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
if self.log_file_path is not None:
|
||||
warnings.warn(
|
||||
"WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
# Remove these attributes to prevent their use
|
||||
if hasattr(self, "log_level"):
|
||||
delattr(self, "log_level")
|
||||
if hasattr(self, "log_file_path"):
|
||||
delattr(self, "log_file_path")
|
||||
|
||||
initialize_share_data()
|
||||
|
||||
if not os.path.exists(self.working_dir):
|
||||
@@ -671,8 +689,24 @@ class LightRAG:
|
||||
all_new_doc_ids = set(new_docs.keys())
|
||||
# Exclude IDs of documents that are already in progress
|
||||
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
|
||||
|
||||
# Log ignored document IDs
|
||||
ignored_ids = [
|
||||
doc_id for doc_id in unique_new_doc_ids if doc_id not in new_docs
|
||||
]
|
||||
if ignored_ids:
|
||||
logger.warning(
|
||||
f"Ignoring {len(ignored_ids)} document IDs not found in new_docs"
|
||||
)
|
||||
for doc_id in ignored_ids:
|
||||
logger.warning(f"Ignored document ID: {doc_id}")
|
||||
|
||||
# Filter new_docs to only include documents with unique IDs
|
||||
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
|
||||
new_docs = {
|
||||
doc_id: new_docs[doc_id]
|
||||
for doc_id in unique_new_doc_ids
|
||||
if doc_id in new_docs
|
||||
}
|
||||
|
||||
if not new_docs:
|
||||
logger.info("No new unique documents were found.")
|
||||
@@ -1369,6 +1403,68 @@ class LightRAG:
|
||||
]
|
||||
)
|
||||
|
||||
def delete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||
"""Synchronously delete a relation between two entities.
|
||||
|
||||
Args:
|
||||
source_entity: Name of the source entity
|
||||
target_entity: Name of the target entity
|
||||
"""
|
||||
loop = always_get_an_event_loop()
|
||||
return loop.run_until_complete(
|
||||
self.adelete_by_relation(source_entity, target_entity)
|
||||
)
|
||||
|
||||
async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||
"""Asynchronously delete a relation between two entities.
|
||||
|
||||
Args:
|
||||
source_entity: Name of the source entity
|
||||
target_entity: Name of the target entity
|
||||
"""
|
||||
try:
|
||||
# Check if the relation exists
|
||||
edge_exists = await self.chunk_entity_relation_graph.has_edge(
|
||||
source_entity, target_entity
|
||||
)
|
||||
if not edge_exists:
|
||||
logger.warning(
|
||||
f"Relation from '{source_entity}' to '{target_entity}' does not exist"
|
||||
)
|
||||
return
|
||||
|
||||
# Delete relation from vector database
|
||||
relation_id = compute_mdhash_id(
|
||||
source_entity + target_entity, prefix="rel-"
|
||||
)
|
||||
await self.relationships_vdb.delete([relation_id])
|
||||
|
||||
# Delete relation from knowledge graph
|
||||
await self.chunk_entity_relation_graph.remove_edges(
|
||||
[(source_entity, target_entity)]
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Successfully deleted relation from '{source_entity}' to '{target_entity}'"
|
||||
)
|
||||
await self._delete_relation_done()
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}"
|
||||
)
|
||||
|
||||
async def _delete_relation_done(self) -> None:
|
||||
"""Callback after relation deletion is complete"""
|
||||
await asyncio.gather(
|
||||
*[
|
||||
cast(StorageNameSpace, storage_inst).index_done_callback()
|
||||
for storage_inst in [ # type: ignore
|
||||
self.relationships_vdb,
|
||||
self.chunk_entity_relation_graph,
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
def _get_content_summary(self, content: str, max_length: int = 100) -> str:
|
||||
"""Get summary of document content
|
||||
|
||||
@@ -1417,14 +1513,22 @@ class LightRAG:
|
||||
|
||||
logger.debug(f"Starting deletion for document {doc_id}")
|
||||
|
||||
doc_to_chunk_id = doc_id.replace("doc", "chunk")
|
||||
# 2. Get all chunks related to this document
|
||||
# Find all chunks where full_doc_id equals the current doc_id
|
||||
all_chunks = await self.text_chunks.get_all()
|
||||
related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
|
||||
# 2. Get all related chunks
|
||||
chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
|
||||
if not chunks:
|
||||
if not related_chunks:
|
||||
logger.warning(f"No chunks found for document {doc_id}")
|
||||
return
|
||||
|
||||
chunk_ids = {chunks["full_doc_id"].replace("doc", "chunk")}
|
||||
# Get all related chunk IDs
|
||||
chunk_ids = set(related_chunks.keys())
|
||||
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
|
||||
|
||||
# 3. Before deleting, check the related entities and relationships for these chunks
|
||||
@@ -1455,51 +1559,57 @@ class LightRAG:
|
||||
await self.text_chunks.delete(chunk_ids)
|
||||
|
||||
# 5. Find and process entities and relationships that have these chunks as source
|
||||
# Get all nodes in the graph
|
||||
nodes = self.chunk_entity_relation_graph._graph.nodes(data=True)
|
||||
edges = self.chunk_entity_relation_graph._graph.edges(data=True)
|
||||
|
||||
# Track which entities and relationships need to be deleted or updated
|
||||
# Get all nodes and edges from the graph storage using storage-agnostic methods
|
||||
entities_to_delete = set()
|
||||
entities_to_update = {} # entity_name -> new_source_id
|
||||
relationships_to_delete = set()
|
||||
relationships_to_update = {} # (src, tgt) -> new_source_id
|
||||
|
||||
# Process entities
|
||||
for node, data in nodes:
|
||||
if "source_id" in data:
|
||||
# Process entities - use storage-agnostic methods
|
||||
all_labels = await self.chunk_entity_relation_graph.get_all_labels()
|
||||
for node_label in all_labels:
|
||||
node_data = await self.chunk_entity_relation_graph.get_node(node_label)
|
||||
if node_data and "source_id" in node_data:
|
||||
# Split source_id using GRAPH_FIELD_SEP
|
||||
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
sources = set(node_data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
sources.difference_update(chunk_ids)
|
||||
if not sources:
|
||||
entities_to_delete.add(node)
|
||||
entities_to_delete.add(node_label)
|
||||
logger.debug(
|
||||
f"Entity {node} marked for deletion - no remaining sources"
|
||||
f"Entity {node_label} marked for deletion - no remaining sources"
|
||||
)
|
||||
else:
|
||||
new_source_id = GRAPH_FIELD_SEP.join(sources)
|
||||
entities_to_update[node] = new_source_id
|
||||
entities_to_update[node_label] = new_source_id
|
||||
logger.debug(
|
||||
f"Entity {node} will be updated with new source_id: {new_source_id}"
|
||||
f"Entity {node_label} will be updated with new source_id: {new_source_id}"
|
||||
)
|
||||
|
||||
# Process relationships
|
||||
for src, tgt, data in edges:
|
||||
if "source_id" in data:
|
||||
# Split source_id using GRAPH_FIELD_SEP
|
||||
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
sources.difference_update(chunk_ids)
|
||||
if not sources:
|
||||
relationships_to_delete.add((src, tgt))
|
||||
logger.debug(
|
||||
f"Relationship {src}-{tgt} marked for deletion - no remaining sources"
|
||||
)
|
||||
else:
|
||||
new_source_id = GRAPH_FIELD_SEP.join(sources)
|
||||
relationships_to_update[(src, tgt)] = new_source_id
|
||||
logger.debug(
|
||||
f"Relationship {src}-{tgt} will be updated with new source_id: {new_source_id}"
|
||||
for node_label in all_labels:
|
||||
node_edges = await self.chunk_entity_relation_graph.get_node_edges(
|
||||
node_label
|
||||
)
|
||||
if node_edges:
|
||||
for src, tgt in node_edges:
|
||||
edge_data = await self.chunk_entity_relation_graph.get_edge(
|
||||
src, tgt
|
||||
)
|
||||
if edge_data and "source_id" in edge_data:
|
||||
# Split source_id using GRAPH_FIELD_SEP
|
||||
sources = set(edge_data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
sources.difference_update(chunk_ids)
|
||||
if not sources:
|
||||
relationships_to_delete.add((src, tgt))
|
||||
logger.debug(
|
||||
f"Relationship {src}-{tgt} marked for deletion - no remaining sources"
|
||||
)
|
||||
else:
|
||||
new_source_id = GRAPH_FIELD_SEP.join(sources)
|
||||
relationships_to_update[(src, tgt)] = new_source_id
|
||||
logger.debug(
|
||||
f"Relationship {src}-{tgt} will be updated with new source_id: {new_source_id}"
|
||||
)
|
||||
|
||||
# Delete entities
|
||||
if entities_to_delete:
|
||||
@@ -1513,12 +1623,15 @@ class LightRAG:
|
||||
|
||||
# Update entities
|
||||
for entity, new_source_id in entities_to_update.items():
|
||||
node_data = self.chunk_entity_relation_graph._graph.nodes[entity]
|
||||
node_data["source_id"] = new_source_id
|
||||
await self.chunk_entity_relation_graph.upsert_node(entity, node_data)
|
||||
logger.debug(
|
||||
f"Updated entity {entity} with new source_id: {new_source_id}"
|
||||
)
|
||||
node_data = await self.chunk_entity_relation_graph.get_node(entity)
|
||||
if node_data:
|
||||
node_data["source_id"] = new_source_id
|
||||
await self.chunk_entity_relation_graph.upsert_node(
|
||||
entity, node_data
|
||||
)
|
||||
logger.debug(
|
||||
f"Updated entity {entity} with new source_id: {new_source_id}"
|
||||
)
|
||||
|
||||
# Delete relationships
|
||||
if relationships_to_delete:
|
||||
@@ -1536,12 +1649,15 @@ class LightRAG:
|
||||
|
||||
# Update relationships
|
||||
for (src, tgt), new_source_id in relationships_to_update.items():
|
||||
edge_data = self.chunk_entity_relation_graph._graph.edges[src, tgt]
|
||||
edge_data["source_id"] = new_source_id
|
||||
await self.chunk_entity_relation_graph.upsert_edge(src, tgt, edge_data)
|
||||
logger.debug(
|
||||
f"Updated relationship {src}-{tgt} with new source_id: {new_source_id}"
|
||||
)
|
||||
edge_data = await self.chunk_entity_relation_graph.get_edge(src, tgt)
|
||||
if edge_data:
|
||||
edge_data["source_id"] = new_source_id
|
||||
await self.chunk_entity_relation_graph.upsert_edge(
|
||||
src, tgt, edge_data
|
||||
)
|
||||
logger.debug(
|
||||
f"Updated relationship {src}-{tgt} with new source_id: {new_source_id}"
|
||||
)
|
||||
|
||||
# 6. Delete original document and status
|
||||
await self.full_docs.delete([doc_id])
|
||||
@@ -1612,9 +1728,18 @@ class LightRAG:
|
||||
logger.warning(f"Document {doc_id} still exists in full_docs")
|
||||
|
||||
# Verify if chunks have been deleted
|
||||
remaining_chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
|
||||
if remaining_chunks:
|
||||
logger.warning(f"Found {len(remaining_chunks)} remaining chunks")
|
||||
all_remaining_chunks = await self.text_chunks.get_all()
|
||||
remaining_related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_remaining_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
|
||||
if remaining_related_chunks:
|
||||
logger.warning(
|
||||
f"Found {len(remaining_related_chunks)} remaining chunks"
|
||||
)
|
||||
|
||||
# Verify entities and relationships
|
||||
for chunk_id in chunk_ids:
|
||||
|
@@ -6,6 +6,7 @@ import io
|
||||
import csv
|
||||
import json
|
||||
import logging
|
||||
import logging.handlers
|
||||
import os
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
@@ -68,6 +69,101 @@ logger.setLevel(logging.INFO)
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
class LightragPathFilter(logging.Filter):
|
||||
"""Filter for lightrag logger to filter out frequent path access logs"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# Define paths to be filtered
|
||||
self.filtered_paths = ["/documents", "/health", "/webui/"]
|
||||
|
||||
def filter(self, record):
|
||||
try:
|
||||
# Check if record has the required attributes for an access log
|
||||
if not hasattr(record, "args") or not isinstance(record.args, tuple):
|
||||
return True
|
||||
if len(record.args) < 5:
|
||||
return True
|
||||
|
||||
# Extract method, path and status from the record args
|
||||
method = record.args[1]
|
||||
path = record.args[2]
|
||||
status = record.args[4]
|
||||
|
||||
# Filter out successful GET requests to filtered paths
|
||||
if (
|
||||
method == "GET"
|
||||
and (status == 200 or status == 304)
|
||||
and path in self.filtered_paths
|
||||
):
|
||||
return False
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
# In case of any error, let the message through
|
||||
return True
|
||||
|
||||
|
||||
def setup_logger(
|
||||
logger_name: str,
|
||||
level: str = "INFO",
|
||||
add_filter: bool = False,
|
||||
log_file_path: str = None,
|
||||
):
|
||||
"""Set up a logger with console and file handlers
|
||||
|
||||
Args:
|
||||
logger_name: Name of the logger to set up
|
||||
level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
||||
add_filter: Whether to add LightragPathFilter to the logger
|
||||
log_file_path: Path to the log file. If None, will use current directory/lightrag.log
|
||||
"""
|
||||
# Configure formatters
|
||||
detailed_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||
|
||||
# Get log file path
|
||||
if log_file_path is None:
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.setLevel(level)
|
||||
logger_instance.handlers = [] # Clear existing handlers
|
||||
logger_instance.propagate = False
|
||||
|
||||
# Add console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(simple_formatter)
|
||||
console_handler.setLevel(level)
|
||||
logger_instance.addHandler(console_handler)
|
||||
|
||||
# Add file handler
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
filename=log_file_path,
|
||||
maxBytes=log_max_bytes,
|
||||
backupCount=log_backup_count,
|
||||
encoding="utf-8",
|
||||
)
|
||||
file_handler.setFormatter(detailed_formatter)
|
||||
file_handler.setLevel(level)
|
||||
logger_instance.addHandler(file_handler)
|
||||
|
||||
# Add path filter if requested
|
||||
if add_filter:
|
||||
path_filter = LightragPathFilter()
|
||||
logger_instance.addFilter(path_filter)
|
||||
|
||||
|
||||
class UnlimitedSemaphore:
|
||||
"""A context manager that allows unlimited access."""
|
||||
|
||||
|
@@ -3,7 +3,7 @@ configparser
|
||||
future
|
||||
|
||||
# Basic modules
|
||||
numpy
|
||||
gensim
|
||||
pipmaster
|
||||
pydantic
|
||||
python-dotenv
|
||||
|
Reference in New Issue
Block a user