add Oracle support

This commit is contained in:
jin
2024-11-12 09:59:12 +08:00
7 changed files with 126 additions and 10 deletions

1
.gitignore vendored
View File

@@ -11,3 +11,4 @@ neo4jWorkDir/
ignore_this.txt
.venv/
*.ignore.*
.ruff_cache/

View File

@@ -8,7 +8,7 @@
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://youtu.be/oageL-1I0GE'><img src='https://badges.aleen42.com/src/youtube.svg'></a>
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
<a href='https://discord.gg/rdE8YVPm'><img src='https://discordapp.com/api/guilds/1296348098003734629/widget.png?style=shield'></a>
<a href='https://discord.gg/yF2MmDJyGJ'><img src='https://discordapp.com/api/guilds/1296348098003734629/widget.png?style=shield'></a>
</p>
<p>
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
@@ -22,7 +22,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
</div>
## 🎉 News
- [x] [2024.11.11]🎯📢You can [use Oracle Database 23ai for all storage types (kv/vector/graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py) now.
- [x] [2024.11.12]🎯📢You can [use Oracle Database 23ai for all storage types (kv/vector/graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py) now.
- [x] [2024.11.11]🎯📢LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete-entity).
- [x] [2024.11.09]🎯📢Now comes [LightRAG Gui](https://lightrag-gui.streamlit.app) that lets you insert, query, visualize, and download LightRAG knowledge.
- [x] [2024.11.04]🎯📢You can [use Neo4J for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-neo4j-for-storage) now.
- [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
@@ -319,6 +320,23 @@ with open("./newText.txt") as f:
rag.insert(f.read())
```
### Delete Entity
```python
# Delete Entity: Deleting entities by their names
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
rag.delete_by_entity("Project Gutenberg")
```
### Multi-file Type Support
The `textract` supports reading file types such as TXT, DOCX, PPTX, CSV, and PDF.

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "0.0.9"
__version__ = "1.0.0"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -118,7 +118,7 @@ class BaseGraphStorage(StorageNameSpace):
):
raise NotImplementedError
async def clustering(self, algorithm: str):
async def delete_node(self, node_id: str):
raise NotImplementedError
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:

View File

@@ -592,7 +592,9 @@ TABLES = {
workspace varchar(1024),
doc_name varchar(1024),
content CLOB,
meta JSON
meta JSON,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""},
"LIGHTRAG_DOC_CHUNKS":
@@ -603,7 +605,9 @@ TABLES = {
chunk_order_index NUMBER,
tokens NUMBER,
content CLOB,
content_vector VECTOR
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""},
"LIGHTRAG_GRAPH_NODES":
@@ -615,7 +619,9 @@ TABLES = {
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""},
"LIGHTRAG_GRAPH_EDGES":
{"ddl":"""CREATE TABLE LIGHTRAG_GRAPH_EDGES (
@@ -628,13 +634,18 @@ TABLES = {
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""},
"LIGHTRAG_LLM_CACHE":
{"ddl":"""CREATE TABLE LIGHTRAG_LLM_CACHE (
id varchar(256) PRIMARY KEY,
send clob,
return clob,
model varchar(1024)
model varchar(1024),
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""},
"LIGHTRAG_GRAPH":

View File

@@ -351,3 +351,34 @@ class LightRAG:
continue
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)
def delete_by_entity(self, entity_name: str):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_entity(entity_name))
async def adelete_by_entity(self, entity_name: str):
entity_name = f'"{entity_name.upper()}"'
try:
await self.entities_vdb.delete_entity(entity_name)
await self.relationships_vdb.delete_relation(entity_name)
await self.chunk_entity_relation_graph.delete_node(entity_name)
logger.info(
f"Entity '{entity_name}' and its relationships have been deleted."
)
await self._delete_by_entity_done()
except Exception as e:
logger.error(f"Error while deleting entity '{entity_name}': {e}")
async def _delete_by_entity_done(self):
tasks = []
for storage_inst in [
self.entities_vdb,
self.relationships_vdb,
self.chunk_entity_relation_graph,
]:
if storage_inst is None:
continue
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)

View File

@@ -7,7 +7,13 @@ import networkx as nx
import numpy as np
from nano_vectordb import NanoVectorDB
from .utils import load_json, logger, write_json
from .utils import (
logger,
load_json,
write_json,
compute_mdhash_id,
)
from .base import (
BaseGraphStorage,
BaseKVStorage,
@@ -111,6 +117,43 @@ class NanoVectorDBStorage(BaseVectorStorage):
]
return results
@property
def client_storage(self):
return getattr(self._client, "_NanoVectorDB__storage")
async def delete_entity(self, entity_name: str):
try:
entity_id = [compute_mdhash_id(entity_name, prefix="ent-")]
if self._client.get(entity_id):
self._client.delete(entity_id)
logger.info(f"Entity {entity_name} have been deleted.")
else:
logger.info(f"No entity found with name {entity_name}.")
except Exception as e:
logger.error(f"Error while deleting entity {entity_name}: {e}")
async def delete_relation(self, entity_name: str):
try:
relations = [
dp
for dp in self.client_storage["data"]
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
]
ids_to_delete = [relation["__id__"] for relation in relations]
if ids_to_delete:
self._client.delete(ids_to_delete)
logger.info(
f"All relations related to entity {entity_name} have been deleted."
)
else:
logger.info(f"No relations found for entity {entity_name}.")
except Exception as e:
logger.error(
f"Error while deleting relations for entity {entity_name}: {e}"
)
async def index_done_callback(self):
self._client.save()
@@ -228,6 +271,18 @@ class NetworkXStorage(BaseGraphStorage):
):
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str):
"""
Delete a node from the graph based on the specified node_id.
:param node_id: The node_id to delete
"""
if self._graph.has_node(node_id):
self._graph.remove_node(node_id)
logger.info(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")