support lmdeploy backend
This commit is contained in:
74
examples/lightrag_lmdeploy_demo.py
Normal file
74
examples/lightrag_lmdeploy_demo.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def lmdeploy_model_complete(
|
||||
prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await lmdeploy_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
## please specify chat_template if your local path does not follow original HF file name,
|
||||
## or model_name is a pytorch model on huggingface.co,
|
||||
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
|
||||
## for a list of chat_template available in lmdeploy.
|
||||
chat_template = "llama3",
|
||||
# model_format ='awq', # if you are using awq quantization model.
|
||||
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=lmdeploy_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
100
lightrag/llm.py
100
lightrag/llm.py
@@ -322,6 +322,106 @@ async def ollama_model_if_cache(
|
||||
return result
|
||||
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_lmdeploy_pipeline(model, tp=1, chat_template=None, log_level='WARNING', model_format='hf', quant_policy=0):
|
||||
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
||||
lmdeploy_pipe = pipeline(
|
||||
model_path=model,
|
||||
backend_config=TurbomindEngineConfig(tp=tp, model_format=model_format, quant_policy=quant_policy),
|
||||
chat_template_config=ChatTemplateConfig(model_name=chat_template) if chat_template else None,
|
||||
log_level='WARNING')
|
||||
return lmdeploy_pipe
|
||||
|
||||
|
||||
async def lmdeploy_model_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[],
|
||||
chat_template=None, model_format='hf',quant_policy=0, **kwargs
|
||||
) -> str:
|
||||
"""
|
||||
Args:
|
||||
model (str): The path to the model.
|
||||
It could be one of the following options:
|
||||
- i) A local directory path of a turbomind model which is
|
||||
converted by `lmdeploy convert` command or download
|
||||
from ii) and iii).
|
||||
- ii) The model_id of a lmdeploy-quantized model hosted
|
||||
inside a model repo on huggingface.co, such as
|
||||
"InternLM/internlm-chat-20b-4bit",
|
||||
"lmdeploy/llama2-chat-70b-4bit", etc.
|
||||
- iii) The model_id of a model hosted inside a model repo
|
||||
on huggingface.co, such as "internlm/internlm-chat-7b",
|
||||
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
|
||||
and so on.
|
||||
chat_template (str): needed when model is a pytorch model on
|
||||
huggingface.co, such as "internlm-chat-7b",
|
||||
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
|
||||
and when the model name of local path did not match the original model name in HF.
|
||||
tp (int): tensor parallel
|
||||
prompt (Union[str, List[str]]): input texts to be completed.
|
||||
do_preprocess (bool): whether pre-process the messages. Default to
|
||||
True, which means chat_template will be applied.
|
||||
skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be False.
|
||||
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
||||
Default to be False, which means greedy decoding will be applied.
|
||||
"""
|
||||
try:
|
||||
import lmdeploy
|
||||
from lmdeploy import version_info, GenerationConfig
|
||||
except:
|
||||
raise ImportError("Please install lmdeploy before intialize lmdeploy backend.")
|
||||
|
||||
kwargs.pop("response_format", None)
|
||||
max_new_tokens = kwargs.pop("max_tokens", 512)
|
||||
tp = kwargs.pop('tp', 1)
|
||||
skip_special_tokens = kwargs.pop('skip_special_tokens', False)
|
||||
do_preprocess = kwargs.pop('do_preprocess', True)
|
||||
do_sample = kwargs.pop('do_sample', False)
|
||||
gen_params = kwargs
|
||||
|
||||
version = version_info
|
||||
if do_sample is not None and version < (0, 6, 0):
|
||||
raise RuntimeError(
|
||||
'`do_sample` parameter is not supported by lmdeploy until '
|
||||
f'v0.6.0, but currently using lmdeloy {lmdeploy.__version__}')
|
||||
else:
|
||||
do_sample = True
|
||||
gen_params.update(do_sample=do_sample)
|
||||
|
||||
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
||||
model=model,
|
||||
tp=tp,
|
||||
chat_template=chat_template,
|
||||
model_format=model_format,
|
||||
quant_policy=quant_policy,
|
||||
log_level='WARNING')
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash(model, messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
|
||||
gen_config = GenerationConfig(
|
||||
skip_special_tokens=skip_special_tokens, max_new_tokens=max_new_tokens, **gen_params)
|
||||
|
||||
response = ""
|
||||
async for res in lmdeploy_pipe.generate(messages, gen_config=gen_config,
|
||||
do_preprocess=do_preprocess, stream_response=False, session_id=1):
|
||||
response += res.response
|
||||
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({args_hash: {"return": response, "model": model}})
|
||||
return response
|
||||
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
|
@@ -13,3 +13,4 @@ tiktoken
|
||||
torch
|
||||
transformers
|
||||
xxhash
|
||||
# lmdeploy[all]
|
||||
|
Reference in New Issue
Block a user