Remove the comments at the end of the environment variable lines in .env file

This commit is contained in:
yangdx
2025-03-29 13:20:22 +08:00
parent c94f30be2d
commit 8e57a925f1
3 changed files with 150 additions and 110 deletions

View File

@@ -3,9 +3,11 @@
### Server Configuration
# HOST=0.0.0.0
# PORT=9621
# WORKERS=1
# NAMESPACE_PREFIX=lightrag # separating data from difference Lightrag instances
# MAX_GRAPH_NODES=1000 # Max nodes return from grap retrieval
# WORKERS=2
### separating data from difference Lightrag instances
# NAMESPACE_PREFIX=lightrag
### Max nodes return from grap retrieval
# MAX_GRAPH_NODES=1000
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
### Optional SSL Configuration
@@ -13,7 +15,7 @@
# SSL_CERTFILE=/path/to/cert.pem
# SSL_KEYFILE=/path/to/key.pem
### Directory Configuration
### Directory Configuration (defaults to current working directory)
# WORKING_DIR=<absolute_path_for_working_dir>
# INPUT_DIR=<absolute_path_for_doc_input_dir>
@@ -23,9 +25,10 @@
### Logging level
# LOG_LEVEL=INFO
# VERBOSE=False
# LOG_DIR=/path/to/log/directory # Log file directory path, defaults to current working directory
# LOG_MAX_BYTES=10485760 # Log file max size in bytes, defaults to 10MB
# LOG_BACKUP_COUNT=5 # Number of backup files to keep, defaults to 5
# LOG_MAX_BYTES=10485760
# LOG_BACKUP_COUNT=5
### Logfile location (defaults to current working directory)
# LOG_DIR=/path/to/log/directory
### Settings for RAG query
# HISTORY_TURNS=3
@@ -36,28 +39,33 @@
# MAX_TOKEN_ENTITY_DESC=4000
### Settings for document indexing
ENABLE_LLM_CACHE_FOR_EXTRACT=true # Enable LLM cache for entity extraction
ENABLE_LLM_CACHE_FOR_EXTRACT=true
SUMMARY_LANGUAGE=English
# CHUNK_SIZE=1200
# CHUNK_OVERLAP_SIZE=100
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
# MAX_PARALLEL_INSERT=2 # Number of parallel processing documents in one patch
### Max tokens for entity or relations summary
# MAX_TOKEN_SUMMARY=500
### Number of parallel processing documents in one patch
# MAX_PARALLEL_INSERT=2
# EMBEDDING_BATCH_NUM=32 # num of chunks send to Embedding in one request
# EMBEDDING_FUNC_MAX_ASYNC=16 # Max concurrency requests for Embedding
### Num of chunks send to Embedding in single request
# EMBEDDING_BATCH_NUM=32
### Max concurrency requests for Embedding
# EMBEDDING_FUNC_MAX_ASYNC=16
# MAX_EMBED_TOKENS=8192
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
### LLM Configuration
TIMEOUT=150 # Time out in seconds for LLM, None for infinite timeout
TEMPERATURE=0.5
MAX_ASYNC=4 # Max concurrency requests of LLM
MAX_TOKENS=32768 # Max tokens send to LLM (less than context size of the model)
### Ollama example (For local services installed with docker, you can use host.docker.internal as host)
LLM_BINDING=ollama
LLM_MODEL=mistral-nemo:latest
LLM_BINDING_API_KEY=your_api_key
### Ollama example
LLM_BINDING_HOST=http://localhost:11434
### OpenAI alike example
# LLM_BINDING=openai
# LLM_MODEL=gpt-4o
@@ -103,9 +111,10 @@ ORACLE_DSN=localhost:1521/XEPDB1
ORACLE_USER=your_username
ORACLE_PASSWORD='your_password'
ORACLE_CONFIG_DIR=/path/to/oracle/config
#ORACLE_WALLET_LOCATION=/path/to/wallet # optional
#ORACLE_WALLET_PASSWORD='your_password' # optional
#ORACLE_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
#ORACLE_WALLET_LOCATION=/path/to/wallet
#ORACLE_WALLET_PASSWORD='your_password'
### separating all data from difference Lightrag instances(deprecating, use NAMESPACE_PREFIX in future)
#ORACLE_WORKSPACE=default
### TiDB Configuration
TIDB_HOST=localhost
@@ -113,7 +122,8 @@ TIDB_PORT=4000
TIDB_USER=your_username
TIDB_PASSWORD='your_password'
TIDB_DATABASE=your_database
#TIDB_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
### separating all data from difference Lightrag instances(deprecating, use NAMESPACE_PREFIX in future)
#TIDB_WORKSPACE=default
### PostgreSQL Configuration
POSTGRES_HOST=localhost
@@ -121,7 +131,8 @@ POSTGRES_PORT=5432
POSTGRES_USER=your_username
POSTGRES_PASSWORD='your_password'
POSTGRES_DATABASE=your_database
#POSTGRES_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
### separating all data from difference Lightrag instances(deprecating, use NAMESPACE_PREFIX in future)
#POSTGRES_WORKSPACE=default
### Independent AGM Configuration(not for AMG embedded in PostreSQL)
AGE_POSTGRES_DB=
@@ -130,8 +141,9 @@ AGE_POSTGRES_PASSWORD=
AGE_POSTGRES_HOST=
# AGE_POSTGRES_PORT=8529
### separating all data from difference Lightrag instances(deprecating, use NAMESPACE_PREFIX in future)
# AGE Graph Name(apply to PostgreSQL and independent AGM)
# AGE_GRAPH_NAME=lightrag # deprecated, use NAME_SPACE_PREFIX instead
# AGE_GRAPH_NAME=lightrag
### Neo4j Configuration
NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io
@@ -141,7 +153,8 @@ NEO4J_PASSWORD='your_password'
### MongoDB Configuration
MONGO_URI=mongodb://root:root@localhost:27017/
MONGO_DATABASE=LightRAG
MONGODB_GRAPH=false # deprecated (keep for backward compatibility)
### separating all data from difference Lightrag instances(deprecating, use NAMESPACE_PREFIX in future)
# MONGODB_GRAPH=false
### Milvus Configuration
MILVUS_URI=http://localhost:19530
@@ -158,9 +171,9 @@ QDRANT_URL=http://localhost:16333
REDIS_URI=redis://localhost:6379
### For JWT Auth
AUTH_ACCOUNTS='admin:admin123,user1:pass456' # username:password,username:password
TOKEN_SECRET=Your-Key-For-LightRAG-API-Server # JWT key
TOKEN_EXPIRE_HOURS=4 # expire duration
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
# TOKEN_EXPIRE_HOURS=4
### API-Key to access LightRAG Server API
# LIGHTRAG_API_KEY=your-secure-api-key-here

View File

@@ -52,7 +52,8 @@ LLM_BINDING=openai
LLM_MODEL=gpt-4o
LLM_BINDING_HOST=https://api.openai.com/v1
LLM_BINDING_API_KEY=your_api_key
MAX_TOKENS=32768 # 发送给 LLM 的最大 token 数(小于模型上下文大小)
### 发送给 LLM 的最大 token 数(小于模型上下文大小)
MAX_TOKENS=32768
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
@@ -68,7 +69,8 @@ LLM_BINDING=ollama
LLM_MODEL=mistral-nemo:latest
LLM_BINDING_HOST=http://localhost:11434
# LLM_BINDING_API_KEY=your_api_key
MAX_TOKENS=8192 # 发送给 LLM 的最大 token 数(基于您的 Ollama 服务器容量)
### 发送给 LLM 的最大 token 数(基于您的 Ollama 服务器容量)
MAX_TOKENS=8192
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
@@ -117,9 +119,12 @@ LightRAG 服务器可以在 `Gunicorn + Uvicorn` 预加载模式下运行。Guni
虽然 LightRAG 服务器使用一个工作进程来处理文档索引流程,但通过 Uvicorn 的异步任务支持,可以并行处理多个文件。文档索引速度的瓶颈主要在于 LLM。如果您的 LLM 支持高并发,您可以通过增加 LLM 的并发级别来加速文档索引。以下是几个与并发处理相关的环境变量及其默认值:
```
WORKERS=2 # 工作进程数,不大于 (2 x 核心数) + 1
MAX_PARALLEL_INSERT=2 # 一批中并行处理的文件数
MAX_ASYNC=4 # LLM 的最大并发请求
### 工作进程数,数字不大于 (2 x 核心数) + 1
WORKERS=2
### 一批中并行处理的文件
MAX_PARALLEL_INSERT=2
# LLM 的最大并发请求数
MAX_ASYNC=4
```
### 将 Lightrag 安装为 Linux 服务
@@ -201,9 +206,9 @@ LightRAG API 服务器使用基于 HS256 算法的 JWT 认证。要启用安全
```bash
# JWT 认证
AUTH_ACCOUNTS='admin:admin123,user1:pass456' # 登录帐号与密码
TOKEN_SECRET=your-key # JWT 密钥
TOKEN_EXPIRE_HOURS=4 # 过期时间
AUTH_ACCOUNTS='admin:admin123,user1:pass456'
TOKEN_SECRET='your-key'
TOKEN_EXPIRE_HOURS=4
```
> 目前仅支持配置一个管理员账户和密码。尚未开发和实现完整的账户系统。
@@ -237,8 +242,11 @@ LLM_BINDING=azure_openai
LLM_BINDING_HOST=your-azure-endpoint
LLM_MODEL=your-model-deployment-name
LLM_BINDING_API_KEY=your-azure-api-key
AZURE_OPENAI_API_VERSION=2024-08-01-preview # 可选,默认为最新版本
EMBEDDING_BINDING=azure_openai # 如果使用 Azure OpenAI 进行嵌入
### API Version可选,默认为最新版本
AZURE_OPENAI_API_VERSION=2024-08-01-preview
### 如果使用 Azure OpenAI 进行嵌入
EMBEDDING_BINDING=azure_openai
EMBEDDING_MODEL=your-embedding-deployment-name
```
@@ -361,7 +369,47 @@ LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
| --embedding-binding | ollama | 嵌入绑定类型lollms、ollama、openai、azure_openai |
| auto-scan-at-startup | - | 扫描输入目录中的新文件并开始索引 |
### 使用示例
### .env 文件示例
```bash
### Server Configuration
# HOST=0.0.0.0
PORT=9621
WORKERS=2
### Settings for document indexing
ENABLE_LLM_CACHE_FOR_EXTRACT=true
SUMMARY_LANGUAGE=Chinese
MAX_PARALLEL_INSERT=2
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
TIMEOUT=200
TEMPERATURE=0.0
MAX_ASYNC=4
MAX_TOKENS=32768
LLM_BINDING=openai
LLM_MODEL=gpt-4o-mini
LLM_BINDING_HOST=https://api.openai.com/v1
LLM_BINDING_API_KEY=your-api-key
### Embedding Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
### For JWT Auth
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
# TOKEN_SECRET=your-key-for-LightRAG-API-Server-xxx
# TOKEN_EXPIRE_HOURS=48
# LIGHTRAG_API_KEY=your-secure-api-key-here-123
# WHITELIST_PATHS=/api/*
# WHITELIST_PATHS=/health,/api/*
```
#### 使用 ollama 默认本地服务器作为 llm 和嵌入后端运行 Lightrag 服务器

View File

@@ -52,7 +52,8 @@ LLM_BINDING=openai
LLM_MODEL=gpt-4o
LLM_BINDING_HOST=https://api.openai.com/v1
LLM_BINDING_API_KEY=your_api_key
MAX_TOKENS=32768 # Max tokens send to LLM (less than model context size)
### Max tokens send to LLM (less than model context size)
MAX_TOKENS=32768
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
@@ -68,7 +69,8 @@ LLM_BINDING=ollama
LLM_MODEL=mistral-nemo:latest
LLM_BINDING_HOST=http://localhost:11434
# LLM_BINDING_API_KEY=your_api_key
MAX_TOKENS=8192 # Max tokens send to LLM (base on your Ollama Server capacity)
### Max tokens send to LLM (base on your Ollama Server capacity)
MAX_TOKENS=8192
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
@@ -121,9 +123,12 @@ The LightRAG Server can operate in the `Gunicorn + Uvicorn` preload mode. Gunico
Though LightRAG Server uses one workers to process the document indexing pipeline, with aysnc task supporting of Uvicorn, multiple files can be processed in parallell. The bottleneck of document indexing speed mainly lies with the LLM. If your LLM supports high concurrency, you can accelerate document indexing by increasing the concurrency level of the LLM. Below are several environment variables related to concurrent processing, along with their default values:
```
WORKERS=2 # Num of worker processes, not greater then (2 x number_of_cores) + 1
MAX_PARALLEL_INSERT=2 # Num of parallel files to process in one batch
MAX_ASYNC=4 # Max concurrency requests of LLM
### Num of worker processes, not greater then (2 x number_of_cores) + 1
WORKERS=2
### Num of parallel files to process in one batch
MAX_PARALLEL_INSERT=2
### Max concurrency requests of LLM
MAX_ASYNC=4
```
### Install Lightrag as a Linux Service
@@ -207,9 +212,9 @@ LightRAG API Server implements JWT-based authentication using HS256 algorithm. T
```bash
# For jwt auth
AUTH_ACCOUNTS='admin:admin123,user1:pass456' # login name and password, separated by comma
TOKEN_SECRET=your-key # JWT key
TOKEN_EXPIRE_HOURS=4 # expire duration
AUTH_ACCOUNTS='admin:admin123,user1:pass456'
TOKEN_SECRET='your-key'
TOKEN_EXPIRE_HOURS=4
```
> Currently, only the configuration of an administrator account and password is supported. A comprehensive account system is yet to be developed and implemented.
@@ -246,10 +251,12 @@ LLM_BINDING=azure_openai
LLM_BINDING_HOST=your-azure-endpoint
LLM_MODEL=your-model-deployment-name
LLM_BINDING_API_KEY=your-azure-api-key
AZURE_OPENAI_API_VERSION=2024-08-01-preview # optional, defaults to latest version
EMBEDDING_BINDING=azure_openai # if using Azure OpenAI for embeddings
EMBEDDING_MODEL=your-embedding-deployment-name
### API version is optional, defaults to latest version
AZURE_OPENAI_API_VERSION=2024-08-01-preview
### if using Azure OpenAI for embeddings
EMBEDDING_BINDING=azure_openai
EMBEDDING_MODEL=your-embedding-deployment-name
```
@@ -373,76 +380,48 @@ You can not change storage implementation selection after you add documents to L
| --embedding-binding | ollama | Embedding binding type (lollms, ollama, openai, azure_openai) |
| auto-scan-at-startup | - | Scan input directory for new files and start indexing |
### Example Usage
#### Running a Lightrag server with ollama default local server as llm and embedding backends
Ollama is the default backend for both llm and embedding, so by default you can run lightrag-server with no parameters and the default ones will be used. Make sure ollama is installed and is running and default models are already installed on ollama.
### .env Examples
```bash
# Run lightrag with ollama, mistral-nemo:latest for llm, and bge-m3:latest for embedding
lightrag-server
### Server Configuration
# HOST=0.0.0.0
PORT=9621
WORKERS=2
### Settings for document indexing
ENABLE_LLM_CACHE_FOR_EXTRACT=true
SUMMARY_LANGUAGE=Chinese
MAX_PARALLEL_INSERT=2
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
TIMEOUT=200
TEMPERATURE=0.0
MAX_ASYNC=4
MAX_TOKENS=32768
LLM_BINDING=openai
LLM_MODEL=gpt-4o-mini
LLM_BINDING_HOST=https://api.openai.com/v1
LLM_BINDING_API_KEY=your-api-key
### Embedding Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://localhost:11434
### For JWT Auth
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
# TOKEN_SECRET=your-key-for-LightRAG-API-Server-xxx
# TOKEN_EXPIRE_HOURS=48
# LIGHTRAG_API_KEY=your-secure-api-key-here-123
# WHITELIST_PATHS=/api/*
# WHITELIST_PATHS=/health,/api/*
# Using an authentication key
lightrag-server --key my-key
```
#### Running a Lightrag server with lollms default local server as llm and embedding backends
```bash
# Run lightrag with lollms, mistral-nemo:latest for llm, and bge-m3:latest for embedding
# Configure LLM_BINDING=lollms and EMBEDDING_BINDING=lollms in .env or config.ini
lightrag-server
# Using an authentication key
lightrag-server --key my-key
```
#### Running a Lightrag server with openai server as llm and embedding backends
```bash
# Run lightrag with openai, GPT-4o-mini for llm, and text-embedding-3-small for embedding
# Configure in .env or config.ini:
# LLM_BINDING=openai
# LLM_MODEL=GPT-4o-mini
# EMBEDDING_BINDING=openai
# EMBEDDING_MODEL=text-embedding-3-small
lightrag-server
# Using an authentication key
lightrag-server --key my-key
```
#### Running a Lightrag server with azure openai server as llm and embedding backends
```bash
# Run lightrag with azure_openai
# Configure in .env or config.ini:
# LLM_BINDING=azure_openai
# LLM_MODEL=your-model
# EMBEDDING_BINDING=azure_openai
# EMBEDDING_MODEL=your-embedding-model
lightrag-server
# Using an authentication key
lightrag-server --key my-key
```
**Important Notes:**
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
- For Ollama: Make sure the specified models are installed in your Ollama instance
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
- For Azure OpenAI: Build and configure your server as stated in the Prequisites section
For help on any server, use the --help flag:
```bash
lightrag-server --help
```
Note: If you don't need the API functionality, you can install the base package without API support using:
```bash
pip install lightrag-hku
```
## API Endpoints