Merge pull request #644 from danielaskdd/Add-Ollama-generate-API-support

Add ollama generate api support
This commit is contained in:
zrguo
2025-01-25 01:52:59 +08:00
committed by GitHub
3 changed files with 409 additions and 31 deletions

View File

@@ -533,6 +533,7 @@ class OllamaChatRequest(BaseModel):
messages: List[OllamaMessage]
stream: bool = True # Default to streaming mode
options: Optional[Dict[str, Any]] = None
system: Optional[str] = None
class OllamaChatResponse(BaseModel):
@@ -542,6 +543,28 @@ class OllamaChatResponse(BaseModel):
done: bool
class OllamaGenerateRequest(BaseModel):
model: str = LIGHTRAG_MODEL
prompt: str
system: Optional[str] = None
stream: bool = False
options: Optional[Dict[str, Any]] = None
class OllamaGenerateResponse(BaseModel):
model: str
created_at: str
response: str
done: bool
context: Optional[List[int]]
total_duration: Optional[int]
load_duration: Optional[int]
prompt_eval_count: Optional[int]
prompt_eval_duration: Optional[int]
eval_count: Optional[int]
eval_duration: Optional[int]
class OllamaVersionResponse(BaseModel):
version: str
@@ -1417,6 +1440,145 @@ def create_app(args):
return query, SearchMode.hybrid
@app.post("/api/generate")
async def generate(raw_request: Request, request: OllamaGenerateRequest):
"""Handle generate completion requests"""
try:
query = request.prompt
start_time = time.time_ns()
prompt_tokens = estimate_tokens(query)
if request.system:
rag.llm_model_kwargs["system_prompt"] = request.system
if request.stream:
from fastapi.responses import StreamingResponse
response = await rag.llm_model_func(
query, stream=True, **rag.llm_model_kwargs
)
async def stream_generator():
try:
first_chunk_time = None
last_chunk_time = None
total_response = ""
# Ensure response is an async generator
if isinstance(response, str):
# If it's a string, send in two parts
first_chunk_time = time.time_ns()
last_chunk_time = first_chunk_time
total_response = response
data = {
"model": LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT,
"response": response,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
"model": LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
else:
async for chunk in response:
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time_ns()
last_chunk_time = time.time_ns()
total_response += chunk
data = {
"model": LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT,
"response": chunk,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
"model": LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
return
except Exception as e:
logging.error(f"Error in stream_generator: {str(e)}")
raise
return StreamingResponse(
stream_generator(),
media_type="application/x-ndjson",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "application/x-ndjson",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type",
},
)
else:
first_chunk_time = time.time_ns()
response_text = await rag.llm_model_func(
query, stream=False, **rag.llm_model_kwargs
)
last_chunk_time = time.time_ns()
if not response_text:
response_text = "No response generated"
completion_tokens = estimate_tokens(str(response_text))
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
return {
"model": LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT,
"response": str(response_text),
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/chat")
async def chat(raw_request: Request, request: OllamaChatRequest):
"""Handle chat completion requests"""
@@ -1429,16 +1591,12 @@ def create_app(args):
# Get the last message as query
query = messages[-1].content
# 解析查询模式
# Check for query prefix
cleaned_query, mode = parse_query_mode(query)
# 开始计时
start_time = time.time_ns()
# 计算输入token数量
prompt_tokens = estimate_tokens(cleaned_query)
# 调用RAG进行查询
query_param = QueryParam(
mode=mode, stream=request.stream, only_need_context=False
)
@@ -1549,7 +1707,21 @@ def create_app(args):
)
else:
first_chunk_time = time.time_ns()
response_text = await rag.aquery(cleaned_query, param=query_param)
# Determine if the request is from Open WebUI's session title and session keyword generation task
match_result = re.search(
r"\n<chat_history>\nUSER:", cleaned_query, re.MULTILINE
)
if match_result:
if request.system:
rag.llm_model_kwargs["system_prompt"] = request.system
response_text = await rag.llm_model_func(
cleaned_query, stream=False, **rag.llm_model_kwargs
)
else:
response_text = await rag.aquery(cleaned_query, param=query_param)
last_chunk_time = time.time_ns()
if not response_text: