Merge pull request #644 from danielaskdd/Add-Ollama-generate-API-support
Add ollama generate api support
This commit is contained in:
@@ -533,6 +533,7 @@ class OllamaChatRequest(BaseModel):
|
||||
messages: List[OllamaMessage]
|
||||
stream: bool = True # Default to streaming mode
|
||||
options: Optional[Dict[str, Any]] = None
|
||||
system: Optional[str] = None
|
||||
|
||||
|
||||
class OllamaChatResponse(BaseModel):
|
||||
@@ -542,6 +543,28 @@ class OllamaChatResponse(BaseModel):
|
||||
done: bool
|
||||
|
||||
|
||||
class OllamaGenerateRequest(BaseModel):
|
||||
model: str = LIGHTRAG_MODEL
|
||||
prompt: str
|
||||
system: Optional[str] = None
|
||||
stream: bool = False
|
||||
options: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class OllamaGenerateResponse(BaseModel):
|
||||
model: str
|
||||
created_at: str
|
||||
response: str
|
||||
done: bool
|
||||
context: Optional[List[int]]
|
||||
total_duration: Optional[int]
|
||||
load_duration: Optional[int]
|
||||
prompt_eval_count: Optional[int]
|
||||
prompt_eval_duration: Optional[int]
|
||||
eval_count: Optional[int]
|
||||
eval_duration: Optional[int]
|
||||
|
||||
|
||||
class OllamaVersionResponse(BaseModel):
|
||||
version: str
|
||||
|
||||
@@ -1417,6 +1440,145 @@ def create_app(args):
|
||||
|
||||
return query, SearchMode.hybrid
|
||||
|
||||
@app.post("/api/generate")
|
||||
async def generate(raw_request: Request, request: OllamaGenerateRequest):
|
||||
"""Handle generate completion requests"""
|
||||
try:
|
||||
query = request.prompt
|
||||
start_time = time.time_ns()
|
||||
prompt_tokens = estimate_tokens(query)
|
||||
|
||||
if request.system:
|
||||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||||
|
||||
if request.stream:
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
response = await rag.llm_model_func(
|
||||
query, stream=True, **rag.llm_model_kwargs
|
||||
)
|
||||
|
||||
async def stream_generator():
|
||||
try:
|
||||
first_chunk_time = None
|
||||
last_chunk_time = None
|
||||
total_response = ""
|
||||
|
||||
# Ensure response is an async generator
|
||||
if isinstance(response, str):
|
||||
# If it's a string, send in two parts
|
||||
first_chunk_time = time.time_ns()
|
||||
last_chunk_time = first_chunk_time
|
||||
total_response = response
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"response": response,
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"done": True,
|
||||
"total_duration": total_time,
|
||||
"load_duration": 0,
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
else:
|
||||
async for chunk in response:
|
||||
if chunk:
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time.time_ns()
|
||||
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
total_response += chunk
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"response": chunk,
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"done": True,
|
||||
"total_duration": total_time,
|
||||
"load_duration": 0,
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
return
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in stream_generator: {str(e)}")
|
||||
raise
|
||||
|
||||
return StreamingResponse(
|
||||
stream_generator(),
|
||||
media_type="application/x-ndjson",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"Content-Type": "application/x-ndjson",
|
||||
"Access-Control-Allow-Origin": "*",
|
||||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||||
"Access-Control-Allow-Headers": "Content-Type",
|
||||
},
|
||||
)
|
||||
else:
|
||||
first_chunk_time = time.time_ns()
|
||||
response_text = await rag.llm_model_func(
|
||||
query, stream=False, **rag.llm_model_kwargs
|
||||
)
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
if not response_text:
|
||||
response_text = "No response generated"
|
||||
|
||||
completion_tokens = estimate_tokens(str(response_text))
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
return {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"response": str(response_text),
|
||||
"done": True,
|
||||
"total_duration": total_time,
|
||||
"load_duration": 0,
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/api/chat")
|
||||
async def chat(raw_request: Request, request: OllamaChatRequest):
|
||||
"""Handle chat completion requests"""
|
||||
@@ -1429,16 +1591,12 @@ def create_app(args):
|
||||
# Get the last message as query
|
||||
query = messages[-1].content
|
||||
|
||||
# 解析查询模式
|
||||
# Check for query prefix
|
||||
cleaned_query, mode = parse_query_mode(query)
|
||||
|
||||
# 开始计时
|
||||
start_time = time.time_ns()
|
||||
|
||||
# 计算输入token数量
|
||||
prompt_tokens = estimate_tokens(cleaned_query)
|
||||
|
||||
# 调用RAG进行查询
|
||||
query_param = QueryParam(
|
||||
mode=mode, stream=request.stream, only_need_context=False
|
||||
)
|
||||
@@ -1549,7 +1707,21 @@ def create_app(args):
|
||||
)
|
||||
else:
|
||||
first_chunk_time = time.time_ns()
|
||||
response_text = await rag.aquery(cleaned_query, param=query_param)
|
||||
|
||||
# Determine if the request is from Open WebUI's session title and session keyword generation task
|
||||
match_result = re.search(
|
||||
r"\n<chat_history>\nUSER:", cleaned_query, re.MULTILINE
|
||||
)
|
||||
if match_result:
|
||||
if request.system:
|
||||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||||
|
||||
response_text = await rag.llm_model_func(
|
||||
cleaned_query, stream=False, **rag.llm_model_kwargs
|
||||
)
|
||||
else:
|
||||
response_text = await rag.aquery(cleaned_query, param=query_param)
|
||||
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
if not response_text:
|
||||
|
Reference in New Issue
Block a user