Fix linting, remove redundant commentsr and clean up code for better readability
This commit is contained in:
@@ -476,6 +476,7 @@ class OllamaChatResponse(BaseModel):
|
||||
message: OllamaMessage
|
||||
done: bool
|
||||
|
||||
|
||||
class OllamaGenerateRequest(BaseModel):
|
||||
model: str = LIGHTRAG_MODEL
|
||||
prompt: str
|
||||
@@ -483,6 +484,7 @@ class OllamaGenerateRequest(BaseModel):
|
||||
stream: bool = False
|
||||
options: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class OllamaGenerateResponse(BaseModel):
|
||||
model: str
|
||||
created_at: str
|
||||
@@ -490,12 +492,13 @@ class OllamaGenerateResponse(BaseModel):
|
||||
done: bool
|
||||
context: Optional[List[int]]
|
||||
total_duration: Optional[int]
|
||||
load_duration: Optional[int]
|
||||
load_duration: Optional[int]
|
||||
prompt_eval_count: Optional[int]
|
||||
prompt_eval_duration: Optional[int]
|
||||
eval_count: Optional[int]
|
||||
eval_duration: Optional[int]
|
||||
|
||||
|
||||
class OllamaVersionResponse(BaseModel):
|
||||
version: str
|
||||
|
||||
@@ -1262,52 +1265,45 @@ def create_app(args):
|
||||
"""Handle generate completion requests"""
|
||||
try:
|
||||
query = request.prompt
|
||||
|
||||
# 开始计时
|
||||
start_time = time.time_ns()
|
||||
|
||||
# 计算输入token数量
|
||||
prompt_tokens = estimate_tokens(query)
|
||||
|
||||
# 直接使用 llm_model_func 进行查询
|
||||
|
||||
if request.system:
|
||||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||||
|
||||
|
||||
if request.stream:
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
|
||||
response = await rag.llm_model_func(
|
||||
query,
|
||||
stream=True,
|
||||
**rag.llm_model_kwargs
|
||||
query, stream=True, **rag.llm_model_kwargs
|
||||
)
|
||||
|
||||
|
||||
async def stream_generator():
|
||||
try:
|
||||
first_chunk_time = None
|
||||
last_chunk_time = None
|
||||
total_response = ""
|
||||
|
||||
# 处理响应
|
||||
|
||||
# Ensure response is an async generator
|
||||
if isinstance(response, str):
|
||||
# 如果是字符串,分两部分发送
|
||||
# If it's a string, send in two parts
|
||||
first_chunk_time = time.time_ns()
|
||||
last_chunk_time = first_chunk_time
|
||||
total_response = response
|
||||
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"response": response,
|
||||
"done": False
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
@@ -1317,7 +1313,7 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
else:
|
||||
@@ -1325,23 +1321,23 @@ def create_app(args):
|
||||
if chunk:
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
total_response += chunk
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"response": chunk,
|
||||
"done": False
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
@@ -1351,15 +1347,15 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
return
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in stream_generator: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
return StreamingResponse(
|
||||
stream_generator(),
|
||||
media_type="application/x-ndjson",
|
||||
@@ -1375,20 +1371,18 @@ def create_app(args):
|
||||
else:
|
||||
first_chunk_time = time.time_ns()
|
||||
response_text = await rag.llm_model_func(
|
||||
query,
|
||||
stream=False,
|
||||
**rag.llm_model_kwargs
|
||||
query, stream=False, **rag.llm_model_kwargs
|
||||
)
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
if not response_text:
|
||||
response_text = "No response generated"
|
||||
|
||||
|
||||
completion_tokens = estimate_tokens(str(response_text))
|
||||
total_time = last_chunk_time - start_time
|
||||
prompt_eval_time = first_chunk_time - start_time
|
||||
eval_time = last_chunk_time - first_chunk_time
|
||||
|
||||
|
||||
return {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
@@ -1399,7 +1393,7 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens,
|
||||
"prompt_eval_duration": prompt_eval_time,
|
||||
"eval_count": completion_tokens,
|
||||
"eval_duration": eval_time
|
||||
"eval_duration": eval_time,
|
||||
}
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
@@ -1417,16 +1411,12 @@ def create_app(args):
|
||||
# Get the last message as query
|
||||
query = messages[-1].content
|
||||
|
||||
# 解析查询模式
|
||||
# Check for query prefix
|
||||
cleaned_query, mode = parse_query_mode(query)
|
||||
|
||||
# 开始计时
|
||||
start_time = time.time_ns()
|
||||
|
||||
# 计算输入token数量
|
||||
prompt_tokens = estimate_tokens(cleaned_query)
|
||||
|
||||
# 调用RAG进行查询
|
||||
query_param = QueryParam(
|
||||
mode=mode, stream=request.stream, only_need_context=False
|
||||
)
|
||||
@@ -1537,25 +1527,21 @@ def create_app(args):
|
||||
)
|
||||
else:
|
||||
first_chunk_time = time.time_ns()
|
||||
|
||||
# 判断是否包含特定字符串,使用正则表达式进行匹配
|
||||
logging.info(f"Cleaned query content: {cleaned_query}")
|
||||
match_result = re.search(r'\n<chat_history>\nUSER:', cleaned_query, re.MULTILINE)
|
||||
logging.info(f"Regex match result: {bool(match_result)}")
|
||||
|
||||
if match_result:
|
||||
|
||||
# Determine if the request is from Open WebUI's session title and session keyword generation task
|
||||
match_result = re.search(
|
||||
r"\n<chat_history>\nUSER:", cleaned_query, re.MULTILINE
|
||||
)
|
||||
if match_result:
|
||||
if request.system:
|
||||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||||
|
||||
response_text = await rag.llm_model_func(
|
||||
cleaned_query,
|
||||
stream=False,
|
||||
**rag.llm_model_kwargs
|
||||
cleaned_query, stream=False, **rag.llm_model_kwargs
|
||||
)
|
||||
else:
|
||||
response_text = await rag.aquery(cleaned_query, param=query_param)
|
||||
|
||||
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
if not response_text:
|
||||
|
@@ -110,7 +110,7 @@ DEFAULT_CONFIG = {
|
||||
},
|
||||
"test_cases": {
|
||||
"basic": {"query": "唐僧有几个徒弟"},
|
||||
"generate": {"query": "电视剧西游记导演是谁"}
|
||||
"generate": {"query": "电视剧西游记导演是谁"},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -205,12 +205,13 @@ def create_chat_request_data(
|
||||
"stream": stream,
|
||||
}
|
||||
|
||||
|
||||
def create_generate_request_data(
|
||||
prompt: str,
|
||||
prompt: str,
|
||||
system: str = None,
|
||||
stream: bool = False,
|
||||
stream: bool = False,
|
||||
model: str = None,
|
||||
options: Dict[str, Any] = None
|
||||
options: Dict[str, Any] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Create generate request data
|
||||
Args:
|
||||
@@ -225,7 +226,7 @@ def create_generate_request_data(
|
||||
data = {
|
||||
"model": model or CONFIG["server"]["model"],
|
||||
"prompt": prompt,
|
||||
"stream": stream
|
||||
"stream": stream,
|
||||
}
|
||||
if system:
|
||||
data["system"] = system
|
||||
@@ -258,7 +259,9 @@ def run_test(func: Callable, name: str) -> None:
|
||||
def test_non_stream_chat() -> None:
|
||||
"""Test non-streaming call to /api/chat endpoint"""
|
||||
url = get_base_url()
|
||||
data = create_chat_request_data(CONFIG["test_cases"]["basic"]["query"], stream=False)
|
||||
data = create_chat_request_data(
|
||||
CONFIG["test_cases"]["basic"]["query"], stream=False
|
||||
)
|
||||
|
||||
# Send request
|
||||
response = make_request(url, data)
|
||||
@@ -487,8 +490,7 @@ def test_non_stream_generate() -> None:
|
||||
"""Test non-streaming call to /api/generate endpoint"""
|
||||
url = get_base_url("generate")
|
||||
data = create_generate_request_data(
|
||||
CONFIG["test_cases"]["generate"]["query"],
|
||||
stream=False
|
||||
CONFIG["test_cases"]["generate"]["query"], stream=False
|
||||
)
|
||||
|
||||
# Send request
|
||||
@@ -504,17 +506,17 @@ def test_non_stream_generate() -> None:
|
||||
{
|
||||
"model": response_json["model"],
|
||||
"response": response_json["response"],
|
||||
"done": response_json["done"]
|
||||
"done": response_json["done"],
|
||||
},
|
||||
"Response content"
|
||||
"Response content",
|
||||
)
|
||||
|
||||
|
||||
def test_stream_generate() -> None:
|
||||
"""Test streaming call to /api/generate endpoint"""
|
||||
url = get_base_url("generate")
|
||||
data = create_generate_request_data(
|
||||
CONFIG["test_cases"]["generate"]["query"],
|
||||
stream=True
|
||||
CONFIG["test_cases"]["generate"]["query"], stream=True
|
||||
)
|
||||
|
||||
# Send request and get streaming response
|
||||
@@ -530,13 +532,17 @@ def test_stream_generate() -> None:
|
||||
# Decode and parse JSON
|
||||
data = json.loads(line.decode("utf-8"))
|
||||
if data.get("done", True): # If it's the completion marker
|
||||
if "total_duration" in data: # Final performance statistics message
|
||||
if (
|
||||
"total_duration" in data
|
||||
): # Final performance statistics message
|
||||
break
|
||||
else: # Normal content message
|
||||
content = data.get("response", "")
|
||||
if content: # Only collect non-empty content
|
||||
output_buffer.append(content)
|
||||
print(content, end="", flush=True) # Print content in real-time
|
||||
print(
|
||||
content, end="", flush=True
|
||||
) # Print content in real-time
|
||||
except json.JSONDecodeError:
|
||||
print("Error decoding JSON from response line")
|
||||
finally:
|
||||
@@ -545,13 +551,14 @@ def test_stream_generate() -> None:
|
||||
# Print a newline
|
||||
print()
|
||||
|
||||
|
||||
def test_generate_with_system() -> None:
|
||||
"""Test generate with system prompt"""
|
||||
url = get_base_url("generate")
|
||||
data = create_generate_request_data(
|
||||
CONFIG["test_cases"]["generate"]["query"],
|
||||
system="你是一个知识渊博的助手",
|
||||
stream=False
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Send request
|
||||
@@ -567,15 +574,16 @@ def test_generate_with_system() -> None:
|
||||
{
|
||||
"model": response_json["model"],
|
||||
"response": response_json["response"],
|
||||
"done": response_json["done"]
|
||||
"done": response_json["done"],
|
||||
},
|
||||
"Response content"
|
||||
"Response content",
|
||||
)
|
||||
|
||||
|
||||
def test_generate_error_handling() -> None:
|
||||
"""Test error handling for generate endpoint"""
|
||||
url = get_base_url("generate")
|
||||
|
||||
|
||||
# Test empty prompt
|
||||
if OutputControl.is_verbose():
|
||||
print("\n=== Testing empty prompt ===")
|
||||
@@ -583,14 +591,14 @@ def test_generate_error_handling() -> None:
|
||||
response = make_request(url, data)
|
||||
print(f"Status code: {response.status_code}")
|
||||
print_json_response(response.json(), "Error message")
|
||||
|
||||
|
||||
# Test invalid options
|
||||
if OutputControl.is_verbose():
|
||||
print("\n=== Testing invalid options ===")
|
||||
data = create_generate_request_data(
|
||||
CONFIG["test_cases"]["basic"]["query"],
|
||||
options={"invalid_option": "value"},
|
||||
stream=False
|
||||
stream=False,
|
||||
)
|
||||
response = make_request(url, data)
|
||||
print(f"Status code: {response.status_code}")
|
||||
@@ -602,12 +610,12 @@ def test_generate_concurrent() -> None:
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def get_session():
|
||||
async with aiohttp.ClientSession() as session:
|
||||
yield session
|
||||
|
||||
|
||||
async def make_request(session, prompt: str):
|
||||
url = get_base_url("generate")
|
||||
data = create_generate_request_data(prompt, stream=False)
|
||||
@@ -616,32 +624,27 @@ def test_generate_concurrent() -> None:
|
||||
return await response.json()
|
||||
except Exception as e:
|
||||
return {"error": str(e)}
|
||||
|
||||
|
||||
async def run_concurrent_requests():
|
||||
prompts = [
|
||||
"第一个问题",
|
||||
"第二个问题",
|
||||
"第三个问题",
|
||||
"第四个问题",
|
||||
"第五个问题"
|
||||
]
|
||||
|
||||
prompts = ["第一个问题", "第二个问题", "第三个问题", "第四个问题", "第五个问题"]
|
||||
|
||||
async with get_session() as session:
|
||||
tasks = [make_request(session, prompt) for prompt in prompts]
|
||||
results = await asyncio.gather(*tasks)
|
||||
return results
|
||||
|
||||
|
||||
if OutputControl.is_verbose():
|
||||
print("\n=== Testing concurrent generate requests ===")
|
||||
|
||||
|
||||
# Run concurrent requests
|
||||
results = asyncio.run(run_concurrent_requests())
|
||||
|
||||
|
||||
# Print results
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f"\nRequest {i} result:")
|
||||
print_json_response(result)
|
||||
|
||||
|
||||
def get_test_cases() -> Dict[str, Callable]:
|
||||
"""Get all available test cases
|
||||
Returns:
|
||||
@@ -657,7 +660,7 @@ def get_test_cases() -> Dict[str, Callable]:
|
||||
"stream_generate": test_stream_generate,
|
||||
"generate_with_system": test_generate_with_system,
|
||||
"generate_errors": test_generate_error_handling,
|
||||
"generate_concurrent": test_generate_concurrent
|
||||
"generate_concurrent": test_generate_concurrent,
|
||||
}
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user