Refactor requirements and code formatting
- Simplified requirements.txt by removing specific version constraints - Added comment about extra library installation using pipmaster - Improved code formatting in base.py, operate.py, and postgres_impl.py - Cleaned up SQL templates and query method signatures with consistent formatting
This commit is contained in:
@@ -108,8 +108,11 @@ class BaseVectorStorage(StorageNameSpace, ABC):
|
||||
embedding_func: EmbeddingFunc
|
||||
cosine_better_than_threshold: float = field(default=0.2)
|
||||
meta_fields: set[str] = field(default_factory=set)
|
||||
|
||||
@abstractmethod
|
||||
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||
async def query(
|
||||
self, query: str, top_k: int, ids: list[str] | None = None
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Query the vector storage and retrieve top_k results."""
|
||||
|
||||
@abstractmethod
|
||||
|
@@ -439,7 +439,7 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
"content": item["content"],
|
||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||
"chunk_id": item["source_id"],
|
||||
#TODO: add document_id
|
||||
# TODO: add document_id
|
||||
}
|
||||
return upsert_sql, data
|
||||
|
||||
@@ -452,8 +452,8 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
"target_id": item["tgt_id"],
|
||||
"content": item["content"],
|
||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||
"chunk_id": item["source_id"]
|
||||
#TODO: add document_id
|
||||
"chunk_id": item["source_id"],
|
||||
# TODO: add document_id
|
||||
}
|
||||
return upsert_sql, data
|
||||
|
||||
@@ -496,7 +496,9 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
await self.db.execute(upsert_sql, data)
|
||||
|
||||
#################### query method ###############
|
||||
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||
async def query(
|
||||
self, query: str, top_k: int, ids: list[str] | None = None
|
||||
) -> list[dict[str, Any]]:
|
||||
embeddings = await self.embedding_func([query])
|
||||
embedding = embeddings[0]
|
||||
embedding_string = ",".join(map(str, embedding))
|
||||
@@ -505,10 +507,9 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
formatted_ids = ",".join(f"'{id}'" for id in ids)
|
||||
else:
|
||||
formatted_ids = "NULL"
|
||||
|
||||
|
||||
sql = SQL_TEMPLATES[self.base_namespace].format(
|
||||
embedding_string=embedding_string,
|
||||
doc_ids=formatted_ids
|
||||
embedding_string=embedding_string, doc_ids=formatted_ids
|
||||
)
|
||||
params = {
|
||||
"workspace": self.db.workspace,
|
||||
@@ -1598,7 +1599,7 @@ SQL_TEMPLATES = {
|
||||
content_vector=EXCLUDED.content_vector,
|
||||
update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
|
||||
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
|
||||
content_vector, chunk_id)
|
||||
VALUES ($1, $2, $3, $4, $5, $6)
|
||||
ON CONFLICT (workspace,id) DO UPDATE
|
||||
@@ -1657,54 +1658,53 @@ SQL_TEMPLATES = {
|
||||
""",
|
||||
"relationships": """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT source_id as src_id, target_id as tgt_id
|
||||
SELECT source_id as src_id, target_id as tgt_id
|
||||
FROM (
|
||||
SELECT r.id, r.source_id, r.target_id, 1 - (r.content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_RELATION r
|
||||
WHERE r.workspace=$1
|
||||
WHERE r.workspace=$1
|
||||
AND r.chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
) filtered
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
""",
|
||||
"entities":
|
||||
'''
|
||||
"entities": """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT entity_name FROM
|
||||
(
|
||||
SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_VDB_ENTITY
|
||||
FROM LIGHTRAG_VDB_ENTITY
|
||||
where workspace=$1
|
||||
AND chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
)
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
''',
|
||||
'chunks': """
|
||||
""",
|
||||
"chunks": """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
SELECT id as chunk_id
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||
)
|
||||
SELECT id FROM
|
||||
(
|
||||
SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
FROM LIGHTRAG_DOC_CHUNKS
|
||||
where workspace=$1
|
||||
AND id IN (SELECT chunk_id FROM relevant_chunks)
|
||||
)
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
WHERE distance>$2
|
||||
ORDER BY distance DESC
|
||||
LIMIT $3
|
||||
"""
|
||||
}
|
||||
""",
|
||||
}
|
||||
|
@@ -893,7 +893,9 @@ async def mix_kg_vector_query(
|
||||
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
|
||||
mix_topk = min(10, query_param.top_k)
|
||||
# TODO: add ids to the query
|
||||
results = await chunks_vdb.query(augmented_query, top_k=mix_topk, ids = query_param.ids)
|
||||
results = await chunks_vdb.query(
|
||||
augmented_query, top_k=mix_topk, ids=query_param.ids
|
||||
)
|
||||
if not results:
|
||||
return None
|
||||
|
||||
@@ -1102,7 +1104,9 @@ async def _get_node_data(
|
||||
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
|
||||
)
|
||||
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||
results = await entities_vdb.query(
|
||||
query, top_k=query_param.top_k, ids=query_param.ids
|
||||
)
|
||||
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
@@ -1357,7 +1361,9 @@ async def _get_edge_data(
|
||||
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
||||
)
|
||||
|
||||
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = query_param.ids)
|
||||
results = await relationships_vdb.query(
|
||||
keywords, top_k=query_param.top_k, ids=query_param.ids
|
||||
)
|
||||
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
@@ -1606,7 +1612,9 @@ async def naive_query(
|
||||
if cached_response is not None:
|
||||
return cached_response
|
||||
|
||||
results = await chunks_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||
results = await chunks_vdb.query(
|
||||
query, top_k=query_param.top_k, ids=query_param.ids
|
||||
)
|
||||
if not len(results):
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
|
@@ -1,53 +1,3 @@
|
||||
aioboto3==14.1.0
|
||||
aiofiles==24.1.0
|
||||
aiohttp==3.11.13
|
||||
ascii_colors==0.5.2
|
||||
asyncpg==0.30.0
|
||||
chromadb==0.6.3
|
||||
community==1.0.0b1
|
||||
docx==0.2.4
|
||||
# faiss
|
||||
fastapi==0.115.11
|
||||
glm==0.4.4
|
||||
graspologic==3.4.1
|
||||
gunicorn==23.0.0
|
||||
httpx==0.28.1
|
||||
imgui_bundle==1.6.2
|
||||
jsonlines==4.0.0
|
||||
llama_index==0.12.22
|
||||
moderngl==5.12.0
|
||||
motor==3.7.0
|
||||
nano_vectordb==0.0.4.3
|
||||
neo4j==5.28.1
|
||||
nest_asyncio==1.6.0
|
||||
networkx==3.4.2
|
||||
numpy
|
||||
openpyxl==3.1.5
|
||||
oracledb==3.0.0
|
||||
Pillow==11.1.0
|
||||
pipmaster==0.4.0
|
||||
protobuf
|
||||
psutil==7.0.0
|
||||
psycopg==3.2.5
|
||||
psycopg_pool==3.2.6
|
||||
pydantic==2.10.6
|
||||
pymilvus==2.5.4
|
||||
pymongo==4.11.2
|
||||
PyPDF2==3.0.1
|
||||
python-dotenv==1.0.1
|
||||
pyvis==0.3.2
|
||||
qdrant_client==1.13.3
|
||||
redis==5.2.1
|
||||
Requests==2.32.3
|
||||
sentence_transformers==3.4.1
|
||||
setuptools==75.8.0
|
||||
SQLAlchemy==2.0.38
|
||||
starlette==0.46.0
|
||||
tenacity==9.0.0
|
||||
tiktoken==0.9.0
|
||||
torch==2.6.0
|
||||
transformers==4.49.0
|
||||
uvicorn==0.34.0
|
||||
aiohttp
|
||||
configparser
|
||||
future
|
||||
@@ -63,3 +13,5 @@ tenacity
|
||||
|
||||
# LLM packages
|
||||
tiktoken
|
||||
|
||||
# Extra libraries are installed when needed using pipmaster
|
||||
|
Reference in New Issue
Block a user