Merge branch 'main' into main
This commit is contained in:
@@ -498,6 +498,10 @@ pip install fastapi uvicorn pydantic
|
||||
2. Set up your environment variables:
|
||||
```bash
|
||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||
```
|
||||
|
||||
3. Run the API server:
|
||||
@@ -522,7 +526,8 @@ The API server provides the following endpoints:
|
||||
```json
|
||||
{
|
||||
"query": "Your question here",
|
||||
"mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
|
||||
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
||||
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
||||
}
|
||||
```
|
||||
- **Example:**
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -18,22 +18,28 @@ app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
LLM_MODEL,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -44,37 +50,41 @@ async def llm_model_func(
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func),
|
||||
)
|
||||
|
||||
|
||||
# Data models
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: str = "hybrid"
|
||||
only_need_context: bool = False
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
class InsertFileRequest(BaseModel):
|
||||
file_path: str
|
||||
|
||||
|
||||
class Response(BaseModel):
|
||||
status: str
|
||||
data: Optional[str] = None
|
||||
@@ -89,7 +99,8 @@ async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
result = await loop.run_in_executor(
|
||||
None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
|
||||
None, lambda: rag.query(request.query,
|
||||
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
@@ -107,30 +118,22 @@ async def insert_endpoint(request: InsertRequest):
|
||||
|
||||
|
||||
@app.post("/insert_file", response_model=Response)
|
||||
async def insert_file(request: InsertFileRequest):
|
||||
async def insert_file(file: UploadFile = File(...)):
|
||||
try:
|
||||
# Check if file exists
|
||||
if not os.path.exists(request.file_path):
|
||||
raise HTTPException(
|
||||
status_code=404, detail=f"File not found: {request.file_path}"
|
||||
)
|
||||
|
||||
file_content = await file.read()
|
||||
# Read file content
|
||||
try:
|
||||
with open(request.file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
content = file_content.decode("utf-8")
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
with open(request.file_path, "r", encoding="gbk") as f:
|
||||
content = f.read()
|
||||
|
||||
content = file_content.decode("gbk")
|
||||
# Insert file content
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||
|
||||
return Response(
|
||||
status="success",
|
||||
message=f"File content from {request.file_path} inserted successfully",
|
||||
message=f"File content from {file.filename} inserted successfully",
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
@@ -1,28 +1,34 @@
|
||||
import networkx as nx
|
||||
|
||||
G = nx.read_graphml('./dickensTestEmbedcall/graph_chunk_entity_relation.graphml')
|
||||
G = nx.read_graphml("./dickensTestEmbedcall/graph_chunk_entity_relation.graphml")
|
||||
|
||||
|
||||
def get_all_edges_and_nodes(G):
|
||||
# Get all edges and their properties
|
||||
edges_with_properties = []
|
||||
for u, v, data in G.edges(data=True):
|
||||
edges_with_properties.append({
|
||||
'start': u,
|
||||
'end': v,
|
||||
'label': data.get('label', ''), # Assuming 'label' is used for edge type
|
||||
'properties': data,
|
||||
'start_node_properties': G.nodes[u],
|
||||
'end_node_properties': G.nodes[v]
|
||||
})
|
||||
edges_with_properties.append(
|
||||
{
|
||||
"start": u,
|
||||
"end": v,
|
||||
"label": data.get(
|
||||
"label", ""
|
||||
), # Assuming 'label' is used for edge type
|
||||
"properties": data,
|
||||
"start_node_properties": G.nodes[u],
|
||||
"end_node_properties": G.nodes[v],
|
||||
}
|
||||
)
|
||||
|
||||
return edges_with_properties
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
# Assume G is your NetworkX graph loaded from Neo4j
|
||||
|
||||
all_edges = get_all_edges_and_nodes(G)
|
||||
|
||||
|
||||
# Print all edges and node properties
|
||||
for edge in all_edges:
|
||||
print(f"Edge Label: {edge['label']}")
|
||||
@@ -31,4 +37,4 @@ if __name__ == "__main__":
|
||||
print(f"Start Node Properties: {edge['start_node_properties']}")
|
||||
print(f"End Node: {edge['end']}")
|
||||
print(f"End Node Properties: {edge['end_node_properties']}")
|
||||
print("---")
|
||||
print("---")
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -1,17 +1,16 @@
|
||||
import asyncio
|
||||
import html
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Union, cast, Tuple, List, Dict
|
||||
import numpy as np
|
||||
from typing import Any, Union, Tuple, List, Dict
|
||||
import inspect
|
||||
from lightrag.utils import load_json, logger, write_json
|
||||
from ..base import (
|
||||
BaseGraphStorage
|
||||
from lightrag.utils import logger
|
||||
from ..base import BaseGraphStorage
|
||||
from neo4j import (
|
||||
AsyncGraphDatabase,
|
||||
exceptions as neo4jExceptions,
|
||||
AsyncDriver,
|
||||
AsyncManagedTransaction,
|
||||
)
|
||||
from neo4j import AsyncGraphDatabase,exceptions as neo4jExceptions,AsyncDriver,AsyncSession, AsyncManagedTransaction
|
||||
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
|
||||
from tenacity import (
|
||||
@@ -26,7 +25,7 @@ from tenacity import (
|
||||
class Neo4JStorage(BaseGraphStorage):
|
||||
@staticmethod
|
||||
def load_nx_graph(file_name):
|
||||
print ("no preloading of graph with neo4j in production")
|
||||
print("no preloading of graph with neo4j in production")
|
||||
|
||||
def __init__(self, namespace, global_config):
|
||||
super().__init__(namespace=namespace, global_config=global_config)
|
||||
@@ -35,7 +34,9 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
URI = os.environ["NEO4J_URI"]
|
||||
USERNAME = os.environ["NEO4J_USERNAME"]
|
||||
PASSWORD = os.environ["NEO4J_PASSWORD"]
|
||||
self._driver: AsyncDriver = AsyncGraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))
|
||||
self._driver: AsyncDriver = AsyncGraphDatabase.driver(
|
||||
URI, auth=(USERNAME, PASSWORD)
|
||||
)
|
||||
return None
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -43,59 +44,54 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
"node2vec": self._node2vec_embed,
|
||||
}
|
||||
|
||||
|
||||
async def close(self):
|
||||
if self._driver:
|
||||
await self._driver.close()
|
||||
self._driver = None
|
||||
|
||||
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
if self._driver:
|
||||
await self._driver.close()
|
||||
|
||||
async def index_done_callback(self):
|
||||
print ("KG successfully indexed.")
|
||||
print("KG successfully indexed.")
|
||||
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
entity_name_label = node_id.strip('"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = f"MATCH (n:`{entity_name_label}`) RETURN count(n) > 0 AS node_exists"
|
||||
result = await session.run(query)
|
||||
async with self._driver.session() as session:
|
||||
query = (
|
||||
f"MATCH (n:`{entity_name_label}`) RETURN count(n) > 0 AS node_exists"
|
||||
)
|
||||
result = await session.run(query)
|
||||
single_result = await result.single()
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["node_exists"]}'
|
||||
)
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["node_exists"]}'
|
||||
)
|
||||
return single_result["node_exists"]
|
||||
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
entity_name_label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = (
|
||||
f"MATCH (a:`{entity_name_label_source}`)-[r]-(b:`{entity_name_label_target}`) "
|
||||
"RETURN COUNT(r) > 0 AS edgeExists"
|
||||
)
|
||||
result = await session.run(query)
|
||||
entity_name_label_source = source_node_id.strip('"')
|
||||
entity_name_label_target = target_node_id.strip('"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = (
|
||||
f"MATCH (a:`{entity_name_label_source}`)-[r]-(b:`{entity_name_label_target}`) "
|
||||
"RETURN COUNT(r) > 0 AS edgeExists"
|
||||
)
|
||||
result = await session.run(query)
|
||||
single_result = await result.single()
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["edgeExists"]}'
|
||||
)
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["edgeExists"]}'
|
||||
)
|
||||
return single_result["edgeExists"]
|
||||
|
||||
def close(self):
|
||||
self._driver.close()
|
||||
|
||||
|
||||
|
||||
def close(self):
|
||||
self._driver.close()
|
||||
|
||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||
async with self._driver.session() as session:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
entity_name_label = node_id.strip('"')
|
||||
query = f"MATCH (n:`{entity_name_label}`) RETURN n"
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
@@ -103,54 +99,51 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
node = record["n"]
|
||||
node_dict = dict(node)
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}: query: {query}, result: {node_dict}'
|
||||
f"{inspect.currentframe().f_code.co_name}: query: {query}, result: {node_dict}"
|
||||
)
|
||||
return node_dict
|
||||
return None
|
||||
|
||||
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
entity_name_label = node_id.strip('"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
async with self._driver.session() as session:
|
||||
query = f"""
|
||||
MATCH (n:`{entity_name_label}`)
|
||||
RETURN COUNT{{ (n)--() }} AS totalEdgeCount
|
||||
"""
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
if record:
|
||||
edge_count = record["totalEdgeCount"]
|
||||
edge_count = record["totalEdgeCount"]
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}'
|
||||
)
|
||||
f"{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}"
|
||||
)
|
||||
return edge_count
|
||||
else:
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
entity_name_label_source = src_id.strip('\"')
|
||||
entity_name_label_target = tgt_id.strip('\"')
|
||||
entity_name_label_source = src_id.strip('"')
|
||||
entity_name_label_target = tgt_id.strip('"')
|
||||
src_degree = await self.node_degree(entity_name_label_source)
|
||||
trg_degree = await self.node_degree(entity_name_label_target)
|
||||
|
||||
|
||||
# Convert None to 0 for addition
|
||||
src_degree = 0 if src_degree is None else src_degree
|
||||
trg_degree = 0 if trg_degree is None else trg_degree
|
||||
|
||||
degrees = int(src_degree) + int(trg_degree)
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:src_Degree+trg_degree:result:{degrees}'
|
||||
)
|
||||
f"{inspect.currentframe().f_code.co_name}:query:src_Degree+trg_degree:result:{degrees}"
|
||||
)
|
||||
return degrees
|
||||
|
||||
|
||||
|
||||
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
||||
entity_name_label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
async def get_edge(
|
||||
self, source_node_id: str, target_node_id: str
|
||||
) -> Union[dict, None]:
|
||||
entity_name_label_source = source_node_id.strip('"')
|
||||
entity_name_label_target = target_node_id.strip('"')
|
||||
"""
|
||||
Find all edges between nodes of two given labels
|
||||
|
||||
@@ -161,28 +154,30 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
Returns:
|
||||
list: List of all relationships/edges found
|
||||
"""
|
||||
async with self._driver.session() as session:
|
||||
async with self._driver.session() as session:
|
||||
query = f"""
|
||||
MATCH (start:`{entity_name_label_source}`)-[r]->(end:`{entity_name_label_target}`)
|
||||
RETURN properties(r) as edge_properties
|
||||
LIMIT 1
|
||||
""".format(entity_name_label_source=entity_name_label_source, entity_name_label_target=entity_name_label_target)
|
||||
|
||||
result = await session.run(query)
|
||||
""".format(
|
||||
entity_name_label_source=entity_name_label_source,
|
||||
entity_name_label_target=entity_name_label_target,
|
||||
)
|
||||
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
if record:
|
||||
result = dict(record["edge_properties"])
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}'
|
||||
)
|
||||
f"{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}"
|
||||
)
|
||||
return result
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
async def get_node_edges(self, source_node_id: str)-> List[Tuple[str, str]]:
|
||||
node_label = source_node_id.strip('\"')
|
||||
|
||||
async def get_node_edges(self, source_node_id: str) -> List[Tuple[str, str]]:
|
||||
node_label = source_node_id.strip('"')
|
||||
|
||||
"""
|
||||
Retrieves all edges (relationships) for a particular node identified by its label.
|
||||
:return: List of dictionaries containing edge information
|
||||
@@ -190,26 +185,37 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
query = f"""MATCH (n:`{node_label}`)
|
||||
OPTIONAL MATCH (n)-[r]-(connected)
|
||||
RETURN n, r, connected"""
|
||||
async with self._driver.session() as session:
|
||||
async with self._driver.session() as session:
|
||||
results = await session.run(query)
|
||||
edges = []
|
||||
async for record in results:
|
||||
source_node = record['n']
|
||||
connected_node = record['connected']
|
||||
|
||||
source_label = list(source_node.labels)[0] if source_node.labels else None
|
||||
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
||||
|
||||
source_node = record["n"]
|
||||
connected_node = record["connected"]
|
||||
|
||||
source_label = (
|
||||
list(source_node.labels)[0] if source_node.labels else None
|
||||
)
|
||||
target_label = (
|
||||
list(connected_node.labels)[0]
|
||||
if connected_node and connected_node.labels
|
||||
else None
|
||||
)
|
||||
|
||||
if source_label and target_label:
|
||||
edges.append((source_label, target_label))
|
||||
|
||||
return edges
|
||||
|
||||
return edges
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
||||
"""
|
||||
@@ -219,7 +225,7 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
node_id: The unique identifier for the node (used as label)
|
||||
node_data: Dictionary of node properties
|
||||
"""
|
||||
label = node_id.strip('\"')
|
||||
label = node_id.strip('"')
|
||||
properties = node_data
|
||||
|
||||
async def _do_upsert(tx: AsyncManagedTransaction):
|
||||
@@ -228,7 +234,9 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
SET n += $properties
|
||||
"""
|
||||
await tx.run(query, properties=properties)
|
||||
logger.debug(f"Upserted node with label '{label}' and properties: {properties}")
|
||||
logger.debug(
|
||||
f"Upserted node with label '{label}' and properties: {properties}"
|
||||
)
|
||||
|
||||
try:
|
||||
async with self._driver.session() as session:
|
||||
@@ -236,13 +244,21 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error during upsert: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]):
|
||||
async def upsert_edge(
|
||||
self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]
|
||||
):
|
||||
"""
|
||||
Upsert an edge and its properties between two nodes identified by their labels.
|
||||
|
||||
@@ -251,8 +267,8 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
target_node_id (str): Label of the target node (used as identifier)
|
||||
edge_data (dict): Dictionary of properties to set on the edge
|
||||
"""
|
||||
source_node_label = source_node_id.strip('\"')
|
||||
target_node_label = target_node_id.strip('\"')
|
||||
source_node_label = source_node_id.strip('"')
|
||||
target_node_label = target_node_id.strip('"')
|
||||
edge_properties = edge_data
|
||||
|
||||
async def _do_upsert_edge(tx: AsyncManagedTransaction):
|
||||
@@ -265,7 +281,9 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
RETURN r
|
||||
"""
|
||||
await tx.run(query, properties=edge_properties)
|
||||
logger.debug(f"Upserted edge from '{source_node_label}' to '{target_node_label}' with properties: {edge_properties}")
|
||||
logger.debug(
|
||||
f"Upserted edge from '{source_node_label}' to '{target_node_label}' with properties: {edge_properties}"
|
||||
)
|
||||
|
||||
try:
|
||||
async with self._driver.session() as session:
|
||||
@@ -273,6 +291,6 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge upsert: {str(e)}")
|
||||
raise
|
||||
|
||||
async def _node2vec_embed(self):
|
||||
print ("Implemented but never called.")
|
||||
|
||||
print("Implemented but never called.")
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import asyncio
|
||||
import os
|
||||
import importlib
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
@@ -24,18 +23,15 @@ from .storage import (
|
||||
NanoVectorDBStorage,
|
||||
NetworkXStorage,
|
||||
)
|
||||
|
||||
from .kg.neo4j_impl import (
|
||||
Neo4JStorage
|
||||
)
|
||||
#future KG integrations
|
||||
|
||||
from .kg.neo4j_impl import Neo4JStorage
|
||||
# future KG integrations
|
||||
|
||||
# from .kg.ArangoDB_impl import (
|
||||
# GraphStorage as ArangoDBStorage
|
||||
# )
|
||||
|
||||
|
||||
|
||||
from .utils import (
|
||||
EmbeddingFunc,
|
||||
compute_mdhash_id,
|
||||
@@ -56,16 +52,18 @@ from .base import (
|
||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
except RuntimeError:
|
||||
logger.info("Creating a new event loop in main thread.")
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
return loop
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class LightRAG:
|
||||
|
||||
working_dir: str = field(
|
||||
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
||||
)
|
||||
@@ -75,8 +73,6 @@ class LightRAG:
|
||||
current_log_level = logger.level
|
||||
log_level: str = field(default=current_log_level)
|
||||
|
||||
|
||||
|
||||
# text chunking
|
||||
chunk_token_size: int = 1200
|
||||
chunk_overlap_token_size: int = 100
|
||||
@@ -131,8 +127,10 @@ class LightRAG:
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
#@TODO: should move all storage setup here to leverage initial start params attached to self.
|
||||
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[self.kg]
|
||||
# @TODO: should move all storage setup here to leverage initial start params attached to self.
|
||||
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
|
||||
self.kg
|
||||
]
|
||||
|
||||
if not os.path.exists(self.working_dir):
|
||||
logger.info(f"Creating working directory {self.working_dir}")
|
||||
@@ -186,6 +184,7 @@ class LightRAG:
|
||||
**self.llm_model_kwargs,
|
||||
)
|
||||
)
|
||||
|
||||
def _get_storage_class(self) -> Type[BaseGraphStorage]:
|
||||
return {
|
||||
"Neo4JStorage": Neo4JStorage,
|
||||
@@ -329,4 +328,4 @@ class LightRAG:
|
||||
if storage_inst is None:
|
||||
continue
|
||||
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
|
||||
await asyncio.gather(*tasks)
|
||||
await asyncio.gather(*tasks)
|
||||
|
@@ -798,4 +798,4 @@ if __name__ == "__main__":
|
||||
result = await gpt_4o_mini_complete("How are you?")
|
||||
print(result)
|
||||
|
||||
asyncio.run(main())
|
||||
asyncio.run(main())
|
||||
|
@@ -466,7 +466,6 @@ async def _build_local_query_context(
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
):
|
||||
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
||||
|
||||
if not len(results):
|
||||
@@ -483,7 +482,7 @@ async def _build_local_query_context(
|
||||
{**n, "entity_name": k["entity_name"], "rank": d}
|
||||
for k, n, d in zip(results, node_datas, node_degrees)
|
||||
if n is not None
|
||||
]#what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
)
|
||||
@@ -946,7 +945,6 @@ async def hybrid_query(
|
||||
query_param,
|
||||
)
|
||||
|
||||
|
||||
if hl_keywords:
|
||||
high_level_context = await _build_global_query_context(
|
||||
hl_keywords,
|
||||
@@ -957,7 +955,6 @@ async def hybrid_query(
|
||||
query_param,
|
||||
)
|
||||
|
||||
|
||||
context = combine_contexts(high_level_context, low_level_context)
|
||||
|
||||
if query_param.only_need_context:
|
||||
@@ -1026,9 +1023,11 @@ def combine_contexts(high_level_context, low_level_context):
|
||||
|
||||
# Combine and deduplicate the entities
|
||||
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
||||
|
||||
|
||||
# Combine and deduplicate the relationships
|
||||
combined_relationships = process_combine_contexts(hl_relationships, ll_relationships)
|
||||
combined_relationships = process_combine_contexts(
|
||||
hl_relationships, ll_relationships
|
||||
)
|
||||
|
||||
# Combine and deduplicate the sources
|
||||
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
||||
@@ -1064,7 +1063,6 @@ async def naive_query(
|
||||
chunks_ids = [r["id"] for r in results]
|
||||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||||
|
||||
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
chunks,
|
||||
key=lambda x: x["content"],
|
||||
@@ -1095,4 +1093,4 @@ async def naive_query(
|
||||
.strip()
|
||||
)
|
||||
|
||||
return response
|
||||
return response
|
||||
|
@@ -233,8 +233,7 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
|
||||
#@TODO: NOT USED
|
||||
# @TODO: NOT USED
|
||||
async def _node2vec_embed(self):
|
||||
from graspologic import embed
|
||||
|
||||
|
@@ -9,7 +9,7 @@ import re
|
||||
from dataclasses import dataclass
|
||||
from functools import wraps
|
||||
from hashlib import md5
|
||||
from typing import Any, Union,List
|
||||
from typing import Any, Union, List
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import numpy as np
|
||||
@@ -176,19 +176,20 @@ def truncate_list_by_token_size(list_data: list, key: callable, max_token_size:
|
||||
return list_data[:i]
|
||||
return list_data
|
||||
|
||||
|
||||
def list_of_list_to_csv(data: List[List[str]]) -> str:
|
||||
output = io.StringIO()
|
||||
writer = csv.writer(output)
|
||||
writer.writerows(data)
|
||||
return output.getvalue()
|
||||
|
||||
|
||||
def csv_string_to_list(csv_string: str) -> List[List[str]]:
|
||||
output = io.StringIO(csv_string)
|
||||
reader = csv.reader(output)
|
||||
return [row for row in reader]
|
||||
|
||||
|
||||
|
||||
|
||||
def save_data_to_file(data, file_name):
|
||||
with open(file_name, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f, ensure_ascii=False, indent=4)
|
||||
@@ -253,13 +254,14 @@ def xml_to_json(xml_file):
|
||||
print(f"An error occurred: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def process_combine_contexts(hl, ll):
|
||||
header = None
|
||||
list_hl = csv_string_to_list(hl.strip())
|
||||
list_ll = csv_string_to_list(ll.strip())
|
||||
|
||||
if list_hl:
|
||||
header=list_hl[0]
|
||||
header = list_hl[0]
|
||||
list_hl = list_hl[1:]
|
||||
if list_ll:
|
||||
header = list_ll[0]
|
||||
@@ -268,19 +270,17 @@ def process_combine_contexts(hl, ll):
|
||||
return ""
|
||||
|
||||
if list_hl:
|
||||
list_hl = [','.join(item[1:]) for item in list_hl if item]
|
||||
list_hl = [",".join(item[1:]) for item in list_hl if item]
|
||||
if list_ll:
|
||||
list_ll = [','.join(item[1:]) for item in list_ll if item]
|
||||
list_ll = [",".join(item[1:]) for item in list_ll if item]
|
||||
|
||||
combined_sources_set = set(
|
||||
filter(None, list_hl + list_ll)
|
||||
)
|
||||
combined_sources_set = set(filter(None, list_hl + list_ll))
|
||||
|
||||
combined_sources = [",\t".join(header)]
|
||||
|
||||
for i, item in enumerate(combined_sources_set, start=1):
|
||||
combined_sources.append(f"{i},\t{item}")
|
||||
|
||||
|
||||
combined_sources = "\n".join(combined_sources)
|
||||
|
||||
return combined_sources
|
||||
|
23
test.py
23
test.py
@@ -1,11 +1,10 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from pprint import pprint
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
@@ -15,7 +14,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
@@ -23,13 +22,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -5,8 +5,8 @@ from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
@@ -18,7 +18,7 @@ rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
kg="Neo4JStorage",
|
||||
log_level="INFO"
|
||||
log_level="INFO",
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
@@ -26,13 +26,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
Reference in New Issue
Block a user