Merge pull request #1447 from danielaskdd/improve-pipeline-file-batch
Improve parallel handling for documents processing
This commit is contained in:
@@ -674,27 +674,9 @@ async def run_scanning_process(rag: LightRAG, doc_manager: DocumentManager):
|
||||
if not new_files:
|
||||
return
|
||||
|
||||
# Get MAX_PARALLEL_INSERT from global_args
|
||||
max_parallel = global_args.max_parallel_insert
|
||||
# Calculate batch size as 2 * MAX_PARALLEL_INSERT
|
||||
batch_size = 2 * max_parallel
|
||||
|
||||
# Process files in batches
|
||||
for i in range(0, total_files, batch_size):
|
||||
batch_files = new_files[i : i + batch_size]
|
||||
batch_num = i // batch_size + 1
|
||||
total_batches = (total_files + batch_size - 1) // batch_size
|
||||
|
||||
logger.info(
|
||||
f"Processing batch {batch_num}/{total_batches} with {len(batch_files)} files"
|
||||
)
|
||||
await pipeline_index_files(rag, batch_files)
|
||||
|
||||
# Log progress
|
||||
processed = min(i + batch_size, total_files)
|
||||
logger.info(
|
||||
f"Processed {processed}/{total_files} files ({processed/total_files*100:.1f}%)"
|
||||
)
|
||||
# Process all files at once
|
||||
await pipeline_index_files(rag, new_files)
|
||||
logger.info(f"Scanning process completed: {total_files} files Processed.")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during scanning process: {str(e)}")
|
||||
|
@@ -841,8 +841,8 @@ class LightRAG:
|
||||
"job_name": "Default Job",
|
||||
"job_start": datetime.now().isoformat(),
|
||||
"docs": 0,
|
||||
"batchs": 0,
|
||||
"cur_batch": 0,
|
||||
"batchs": 0, # Total number of files to be processed
|
||||
"cur_batch": 0, # Number of files already processed
|
||||
"request_pending": False, # Clear any previous request
|
||||
"latest_message": "",
|
||||
}
|
||||
@@ -867,18 +867,13 @@ class LightRAG:
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
break
|
||||
|
||||
# 2. split docs into chunks, insert chunks, update doc status
|
||||
docs_batches = [
|
||||
list(to_process_docs.items())[i : i + self.max_parallel_insert]
|
||||
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
||||
]
|
||||
|
||||
log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches"
|
||||
log_message = f"Processing {len(to_process_docs)} document(s)"
|
||||
logger.info(log_message)
|
||||
|
||||
# Update pipeline status with current batch information
|
||||
# Update pipeline_status, batchs now represents the total number of files to be processed
|
||||
pipeline_status["docs"] = len(to_process_docs)
|
||||
pipeline_status["batchs"] = len(docs_batches)
|
||||
pipeline_status["batchs"] = len(to_process_docs)
|
||||
pipeline_status["cur_batch"] = 0
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
@@ -892,6 +887,11 @@ class LightRAG:
|
||||
job_name = f"{path_prefix}[{total_files} files]"
|
||||
pipeline_status["job_name"] = job_name
|
||||
|
||||
# Create a counter to track the number of processed files
|
||||
processed_count = 0
|
||||
# Create a semaphore to limit the number of concurrent file processing
|
||||
semaphore = asyncio.Semaphore(self.max_parallel_insert)
|
||||
|
||||
async def process_document(
|
||||
doc_id: str,
|
||||
status_doc: DocProcessingStatus,
|
||||
@@ -899,45 +899,97 @@ class LightRAG:
|
||||
split_by_character_only: bool,
|
||||
pipeline_status: dict,
|
||||
pipeline_status_lock: asyncio.Lock,
|
||||
semaphore: asyncio.Semaphore,
|
||||
) -> None:
|
||||
"""Process single document"""
|
||||
try:
|
||||
# Get file path from status document
|
||||
file_path = getattr(status_doc, "file_path", "unknown_source")
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Processing file: {file_path}"
|
||||
logger.info(log_message)
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
log_message = f"Processing d-id: {doc_id}"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
async with semaphore:
|
||||
nonlocal processed_count
|
||||
current_file_number = 0
|
||||
try:
|
||||
# Get file path from status document
|
||||
file_path = getattr(
|
||||
status_doc, "file_path", "unknown_source"
|
||||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
async with pipeline_status_lock:
|
||||
# Update processed file count and save current file number
|
||||
processed_count += 1
|
||||
current_file_number = (
|
||||
processed_count # Save the current file number
|
||||
)
|
||||
pipeline_status["cur_batch"] = processed_count
|
||||
|
||||
log_message = f"Processing file ({current_file_number}/{total_files}): {file_path}"
|
||||
logger.info(log_message)
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
log_message = f"Processing d-id: {doc_id}"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"file_path": file_path,
|
||||
}
|
||||
}
|
||||
)
|
||||
)
|
||||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
)
|
||||
)
|
||||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
doc_status_task,
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
@@ -948,112 +1000,67 @@ class LightRAG:
|
||||
}
|
||||
}
|
||||
)
|
||||
)
|
||||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
)
|
||||
)
|
||||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
doc_status_task,
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"file_path": file_path,
|
||||
|
||||
# Call _insert_done after processing each file
|
||||
await self._insert_done()
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Completed processing file {current_file_number}/{total_files}: {file_path}"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
except Exception as e:
|
||||
# Log error and update pipeline status
|
||||
error_msg = f"Failed to process document {doc_id}: {traceback.format_exc()}"
|
||||
|
||||
logger.error(error_msg)
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = error_msg
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]:
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
# Update document status to failed
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"file_path": file_path,
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# Create processing tasks for all documents
|
||||
doc_tasks = []
|
||||
for doc_id, status_doc in to_process_docs.items():
|
||||
doc_tasks.append(
|
||||
process_document(
|
||||
doc_id,
|
||||
status_doc,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
semaphore,
|
||||
)
|
||||
except Exception as e:
|
||||
# Log error and update pipeline status
|
||||
error_msg = f"Failed to process document {doc_id}: {traceback.format_exc()}"
|
||||
|
||||
logger.error(error_msg)
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = error_msg
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]:
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
# Update document status to failed
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"file_path": file_path,
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# 3. iterate over batches
|
||||
total_batches = len(docs_batches)
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
current_batch = batch_idx + 1
|
||||
log_message = (
|
||||
f"Start processing batch {current_batch} of {total_batches}."
|
||||
)
|
||||
logger.info(log_message)
|
||||
pipeline_status["cur_batch"] = current_batch
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
doc_tasks = []
|
||||
for doc_id, status_doc in docs_batch:
|
||||
doc_tasks.append(
|
||||
process_document(
|
||||
doc_id,
|
||||
status_doc,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
)
|
||||
)
|
||||
|
||||
# Process documents in one batch parallelly
|
||||
await asyncio.gather(*doc_tasks)
|
||||
await self._insert_done()
|
||||
|
||||
log_message = f"Completed batch {current_batch} of {total_batches}."
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
# Wait for all document processing to complete
|
||||
await asyncio.gather(*doc_tasks)
|
||||
|
||||
# Check if there's a pending request to process more documents (with lock)
|
||||
has_pending_request = False
|
||||
@@ -1107,9 +1114,11 @@ class LightRAG:
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to extract entities and relationships : {traceback.format_exc()} 。"
|
||||
)
|
||||
error_msg = f"Failed to extract entities and relationships: {str(e)}"
|
||||
logger.error(error_msg)
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = error_msg
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
raise e
|
||||
|
||||
async def _insert_done(
|
||||
|
Reference in New Issue
Block a user