Merge pull request #1447 from danielaskdd/improve-pipeline-file-batch

Improve parallel handling for documents processing
This commit is contained in:
Daniel.y
2025-04-24 17:50:45 +08:00
committed by GitHub
2 changed files with 161 additions and 170 deletions

View File

@@ -674,27 +674,9 @@ async def run_scanning_process(rag: LightRAG, doc_manager: DocumentManager):
if not new_files:
return
# Get MAX_PARALLEL_INSERT from global_args
max_parallel = global_args.max_parallel_insert
# Calculate batch size as 2 * MAX_PARALLEL_INSERT
batch_size = 2 * max_parallel
# Process files in batches
for i in range(0, total_files, batch_size):
batch_files = new_files[i : i + batch_size]
batch_num = i // batch_size + 1
total_batches = (total_files + batch_size - 1) // batch_size
logger.info(
f"Processing batch {batch_num}/{total_batches} with {len(batch_files)} files"
)
await pipeline_index_files(rag, batch_files)
# Log progress
processed = min(i + batch_size, total_files)
logger.info(
f"Processed {processed}/{total_files} files ({processed/total_files*100:.1f}%)"
)
# Process all files at once
await pipeline_index_files(rag, new_files)
logger.info(f"Scanning process completed: {total_files} files Processed.")
except Exception as e:
logger.error(f"Error during scanning process: {str(e)}")

View File

@@ -841,8 +841,8 @@ class LightRAG:
"job_name": "Default Job",
"job_start": datetime.now().isoformat(),
"docs": 0,
"batchs": 0,
"cur_batch": 0,
"batchs": 0, # Total number of files to be processed
"cur_batch": 0, # Number of files already processed
"request_pending": False, # Clear any previous request
"latest_message": "",
}
@@ -867,18 +867,13 @@ class LightRAG:
pipeline_status["history_messages"].append(log_message)
break
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches"
log_message = f"Processing {len(to_process_docs)} document(s)"
logger.info(log_message)
# Update pipeline status with current batch information
# Update pipeline_status, batchs now represents the total number of files to be processed
pipeline_status["docs"] = len(to_process_docs)
pipeline_status["batchs"] = len(docs_batches)
pipeline_status["batchs"] = len(to_process_docs)
pipeline_status["cur_batch"] = 0
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
@@ -892,6 +887,11 @@ class LightRAG:
job_name = f"{path_prefix}[{total_files} files]"
pipeline_status["job_name"] = job_name
# Create a counter to track the number of processed files
processed_count = 0
# Create a semaphore to limit the number of concurrent file processing
semaphore = asyncio.Semaphore(self.max_parallel_insert)
async def process_document(
doc_id: str,
status_doc: DocProcessingStatus,
@@ -899,45 +899,97 @@ class LightRAG:
split_by_character_only: bool,
pipeline_status: dict,
pipeline_status_lock: asyncio.Lock,
semaphore: asyncio.Semaphore,
) -> None:
"""Process single document"""
try:
# Get file path from status document
file_path = getattr(status_doc, "file_path", "unknown_source")
async with pipeline_status_lock:
log_message = f"Processing file: {file_path}"
logger.info(log_message)
pipeline_status["history_messages"].append(log_message)
log_message = f"Processing d-id: {doc_id}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
"file_path": file_path, # Add file path to each chunk
}
for dp in self.chunking_func(
self.tokenizer,
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
async with semaphore:
nonlocal processed_count
current_file_number = 0
try:
# Get file path from status document
file_path = getattr(
status_doc, "file_path", "unknown_source"
)
}
# Process document (text chunks and full docs) in parallel
# Create tasks with references for potential cancellation
doc_status_task = asyncio.create_task(
self.doc_status.upsert(
async with pipeline_status_lock:
# Update processed file count and save current file number
processed_count += 1
current_file_number = (
processed_count # Save the current file number
)
pipeline_status["cur_batch"] = processed_count
log_message = f"Processing file ({current_file_number}/{total_files}): {file_path}"
logger.info(log_message)
pipeline_status["history_messages"].append(log_message)
log_message = f"Processing d-id: {doc_id}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
"file_path": file_path, # Add file path to each chunk
}
for dp in self.chunking_func(
self.tokenizer,
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
)
}
# Process document (text chunks and full docs) in parallel
# Create tasks with references for potential cancellation
doc_status_task = asyncio.create_task(
self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSING,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
"file_path": file_path,
}
}
)
)
chunks_vdb_task = asyncio.create_task(
self.chunks_vdb.upsert(chunks)
)
entity_relation_task = asyncio.create_task(
self._process_entity_relation_graph(
chunks, pipeline_status, pipeline_status_lock
)
)
full_docs_task = asyncio.create_task(
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
)
)
text_chunks_task = asyncio.create_task(
self.text_chunks.upsert(chunks)
)
tasks = [
doc_status_task,
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSING,
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
@@ -948,112 +1000,67 @@ class LightRAG:
}
}
)
)
chunks_vdb_task = asyncio.create_task(
self.chunks_vdb.upsert(chunks)
)
entity_relation_task = asyncio.create_task(
self._process_entity_relation_graph(
chunks, pipeline_status, pipeline_status_lock
)
)
full_docs_task = asyncio.create_task(
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
)
)
text_chunks_task = asyncio.create_task(
self.text_chunks.upsert(chunks)
)
tasks = [
doc_status_task,
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
"file_path": file_path,
# Call _insert_done after processing each file
await self._insert_done()
async with pipeline_status_lock:
log_message = f"Completed processing file {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
# Log error and update pipeline status
error_msg = f"Failed to process document {doc_id}: {traceback.format_exc()}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(error_msg)
# Cancel other tasks as they are no longer meaningful
for task in [
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]:
if not task.done():
task.cancel()
# Update document status to failed
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
"file_path": file_path,
}
}
}
)
# Create processing tasks for all documents
doc_tasks = []
for doc_id, status_doc in to_process_docs.items():
doc_tasks.append(
process_document(
doc_id,
status_doc,
split_by_character,
split_by_character_only,
pipeline_status,
pipeline_status_lock,
semaphore,
)
except Exception as e:
# Log error and update pipeline status
error_msg = f"Failed to process document {doc_id}: {traceback.format_exc()}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(error_msg)
# Cancel other tasks as they are no longer meaningful
for task in [
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]:
if not task.done():
task.cancel()
# Update document status to failed
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
"file_path": file_path,
}
}
)
# 3. iterate over batches
total_batches = len(docs_batches)
for batch_idx, docs_batch in enumerate(docs_batches):
current_batch = batch_idx + 1
log_message = (
f"Start processing batch {current_batch} of {total_batches}."
)
logger.info(log_message)
pipeline_status["cur_batch"] = current_batch
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
doc_tasks = []
for doc_id, status_doc in docs_batch:
doc_tasks.append(
process_document(
doc_id,
status_doc,
split_by_character,
split_by_character_only,
pipeline_status,
pipeline_status_lock,
)
)
# Process documents in one batch parallelly
await asyncio.gather(*doc_tasks)
await self._insert_done()
log_message = f"Completed batch {current_batch} of {total_batches}."
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Wait for all document processing to complete
await asyncio.gather(*doc_tasks)
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
@@ -1107,9 +1114,11 @@ class LightRAG:
llm_response_cache=self.llm_response_cache,
)
except Exception as e:
logger.error(
f"Failed to extract entities and relationships : {traceback.format_exc()}"
)
error_msg = f"Failed to extract entities and relationships: {str(e)}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(error_msg)
raise e
async def _insert_done(