Merge branch 'HKUDS:main' into main

This commit is contained in:
jin
2024-11-27 15:16:28 +08:00
committed by GitHub
6 changed files with 313 additions and 23 deletions

View File

@@ -26,7 +26,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
</div>
## 🎉 News
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author!
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
- [x] [2024.11.12]🎯📢LightRAG now supports [Oracle Database 23ai for all storage types (KV, vector, and graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py).
- [x] [2024.11.11]🎯📢LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete-entity).
- [x] [2024.11.09]🎯📢Introducing the [LightRAG Gui](https://lightrag-gui.streamlit.app), which allows you to insert, query, visualize, and download LightRAG knowledge.
@@ -327,6 +328,49 @@ with open("./newText.txt") as f:
rag.insert(f.read())
```
### Insert Custom KG
```python
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
custom_kg = {
"entities": [
{
"entity_name": "CompanyA",
"entity_type": "Organization",
"description": "A major technology company",
"source_id": "Source1"
},
{
"entity_name": "ProductX",
"entity_type": "Product",
"description": "A popular product developed by CompanyA",
"source_id": "Source1"
}
],
"relationships": [
{
"src_id": "CompanyA",
"tgt_id": "ProductX",
"description": "CompanyA develops ProductX",
"keywords": "develop, produce",
"weight": 1.0,
"source_id": "Source1"
}
]
}
rag.insert_custom_kg(custom_kg)
```
### Delete Entity
```python

View File

@@ -0,0 +1,108 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./custom_kg"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
custom_kg = {
"entities": [
{
"entity_name": "CompanyA",
"entity_type": "Organization",
"description": "A major technology company",
"source_id": "Source1"
},
{
"entity_name": "ProductX",
"entity_type": "Product",
"description": "A popular product developed by CompanyA",
"source_id": "Source1"
},
{
"entity_name": "PersonA",
"entity_type": "Person",
"description": "A renowned researcher in AI",
"source_id": "Source2"
},
{
"entity_name": "UniversityB",
"entity_type": "Organization",
"description": "A leading university specializing in technology and sciences",
"source_id": "Source2"
},
{
"entity_name": "CityC",
"entity_type": "Location",
"description": "A large metropolitan city known for its culture and economy",
"source_id": "Source3"
},
{
"entity_name": "EventY",
"entity_type": "Event",
"description": "An annual technology conference held in CityC",
"source_id": "Source3"
},
{
"entity_name": "CompanyD",
"entity_type": "Organization",
"description": "A financial services company specializing in insurance",
"source_id": "Source4"
},
{
"entity_name": "ServiceZ",
"entity_type": "Service",
"description": "An insurance product offered by CompanyD",
"source_id": "Source4"
}
],
"relationships": [
{
"src_id": "CompanyA",
"tgt_id": "ProductX",
"description": "CompanyA develops ProductX",
"keywords": "develop, produce",
"weight": 1.0,
"source_id": "Source1"
},
{
"src_id": "PersonA",
"tgt_id": "UniversityB",
"description": "PersonA works at UniversityB",
"keywords": "employment, affiliation",
"weight": 0.9,
"source_id": "Source2"
},
{
"src_id": "CityC",
"tgt_id": "EventY",
"description": "EventY is hosted in CityC",
"keywords": "host, location",
"weight": 0.8,
"source_id": "Source3"
},
{
"src_id": "CompanyD",
"tgt_id": "ServiceZ",
"description": "CompanyD provides ServiceZ",
"keywords": "provide, offer",
"weight": 1.0,
"source_id": "Source4"
}
]
}
rag.insert_custom_kg(custom_kg)

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "1.0.1"
__version__ = "1.0.2"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -1,5 +1,6 @@
import asyncio
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
@@ -242,7 +243,9 @@ class LightRAG:
logger.info(f"[New Docs] inserting {len(new_docs)} docs")
inserting_chunks = {}
for doc_key, doc in new_docs.items():
for doc_key, doc in tqdm_async(
new_docs.items(), desc="Chunking documents", unit="doc"
):
chunks = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
@@ -304,6 +307,108 @@ class LightRAG:
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)
def insert_custom_kg(self, custom_kg: dict):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.ainsert_custom_kg(custom_kg))
async def ainsert_custom_kg(self, custom_kg: dict):
update_storage = False
try:
# Insert entities into knowledge graph
all_entities_data = []
for entity_data in custom_kg.get("entities", []):
entity_name = f'"{entity_data["entity_name"].upper()}"'
entity_type = entity_data.get("entity_type", "UNKNOWN")
description = entity_data.get("description", "No description provided")
source_id = entity_data["source_id"]
# Prepare node data
node_data = {
"entity_type": entity_type,
"description": description,
"source_id": source_id,
}
# Insert node data into the knowledge graph
await self.chunk_entity_relation_graph.upsert_node(
entity_name, node_data=node_data
)
node_data["entity_name"] = entity_name
all_entities_data.append(node_data)
update_storage = True
# Insert relationships into knowledge graph
all_relationships_data = []
for relationship_data in custom_kg.get("relationships", []):
src_id = f'"{relationship_data["src_id"].upper()}"'
tgt_id = f'"{relationship_data["tgt_id"].upper()}"'
description = relationship_data["description"]
keywords = relationship_data["keywords"]
weight = relationship_data.get("weight", 1.0)
source_id = relationship_data["source_id"]
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
await self.chunk_entity_relation_graph.has_node(need_insert_id)
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
node_data={
"source_id": source_id,
"description": "UNKNOWN",
"entity_type": "UNKNOWN",
},
)
# Insert edge into the knowledge graph
await self.chunk_entity_relation_graph.upsert_edge(
src_id,
tgt_id,
edge_data={
"weight": weight,
"description": description,
"keywords": keywords,
"source_id": source_id,
},
)
edge_data = {
"src_id": src_id,
"tgt_id": tgt_id,
"description": description,
"keywords": keywords,
}
all_relationships_data.append(edge_data)
update_storage = True
# Insert entities into vector storage if needed
if self.entities_vdb is not None:
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + dp["description"],
"entity_name": dp["entity_name"],
}
for dp in all_entities_data
}
await self.entities_vdb.upsert(data_for_vdb)
# Insert relationships into vector storage if needed
if self.relationships_vdb is not None:
data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
+ dp["src_id"]
+ dp["tgt_id"]
+ dp["description"],
}
for dp in all_relationships_data
}
await self.relationships_vdb.upsert(data_for_vdb)
finally:
if update_storage:
await self._insert_done()
def query(self, query: str, param: QueryParam = QueryParam()):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.aquery(query, param))

View File

@@ -1,6 +1,7 @@
import asyncio
import json
import re
from tqdm.asyncio import tqdm as tqdm_async
from typing import Union
from collections import Counter, defaultdict
import warnings
@@ -342,11 +343,15 @@ async def extract_entities(
)
return dict(maybe_nodes), dict(maybe_edges)
# use_llm_func is wrapped in ascynio.Semaphore, limiting max_async callings
results = await asyncio.gather(
*[_process_single_content(c) for c in ordered_chunks]
)
print() # clear the progress bar
results = []
for result in tqdm_async(
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
total=len(ordered_chunks),
desc="Extracting entities from chunks",
unit="chunk",
):
results.append(await result)
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for m_nodes, m_edges in results:
@@ -354,18 +359,38 @@ async def extract_entities(
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
all_entities_data = await asyncio.gather(
*[
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
for k, v in maybe_nodes.items()
]
)
all_relationships_data = await asyncio.gather(
*[
_merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config)
for k, v in maybe_edges.items()
]
)
logger.info("Inserting entities into storage...")
all_entities_data = []
for result in tqdm_async(
asyncio.as_completed(
[
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
for k, v in maybe_nodes.items()
]
),
total=len(maybe_nodes),
desc="Inserting entities",
unit="entity",
):
all_entities_data.append(await result)
logger.info("Inserting relationships into storage...")
all_relationships_data = []
for result in tqdm_async(
asyncio.as_completed(
[
_merge_edges_then_upsert(
k[0], k[1], v, knowledge_graph_inst, global_config
)
for k, v in maybe_edges.items()
]
),
total=len(maybe_edges),
desc="Inserting relationships",
unit="relationship",
):
all_relationships_data.append(await result)
if not len(all_entities_data):
logger.warning("Didn't extract any entities, maybe your LLM is not working")
return None

View File

@@ -1,6 +1,7 @@
import asyncio
import html
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
from typing import Any, Union, cast
import networkx as nx
@@ -95,9 +96,16 @@ class NanoVectorDBStorage(BaseVectorStorage):
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = []
for f in tqdm_async(
asyncio.as_completed(embedding_tasks),
total=len(embedding_tasks),
desc="Generating embeddings",
unit="batch",
):
embeddings = await f
embeddings_list.append(embeddings)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]